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This book serves as high-level documentation for async-std and a way of learning async programming in Rust through it. As such, it focuses on the async-std API and the task model it gives you.

Please note that the Rust project provides its own book on asynchronous programming, called "Asynchronous Programming in Rust", which we highly recommend reading along with this book, as it provides a different, wider view on the topic.



    Welcome to async-std

async-std, along with its supporting libraries, is a library making your life in async programming easier. It provides fundamental implementations for downstream libraries and applications alike. The name reflects the approach of this library: it is as closely modeled to the Rust main standard library as possible, replacing all components by async counterparts.

async-std provides an interface to all important primitives: filesystem operations, network operations and concurrency basics like timers. It also exposes a task in a model similar to the thread module found in the Rust standard lib.  But it does not only include I/O primitives, but also async/await compatible versions of primitives like Mutex.



    Stability and SemVer

async-std follows https://semver.org/.

In short: we are versioning our software as MAJOR.MINOR.PATCH. We increase the:


	MAJOR version when there are incompatible API changes,

	MINOR version when we introduce functionality in a backwards-compatible manner

	PATCH version when we make backwards-compatible bug fixes



We will provide migration documentation between major versions.

Future expectations

async-std uses its own implementations of the following concepts:


	Read

	Write

	Seek

	BufRead

	Stream



For integration with the ecosystem, all types implementing these traits also have an implementation of the corresponding interfaces in the futures-rs library.
Please note that our SemVer guarantees don't extend to usage of those interfaces. We expect those to be conservatively updated and in lockstep.

Minimum version policy

The current tentative policy is that the minimum Rust version required to use this crate can be increased in minor version updates. For example, if async-std 1.0 requires Rust 1.37.0, then async-std 1.0.z for all values of z will also require Rust 1.37.0 or newer. However, async-std 1.y for y > 0 may require a newer minimum version of Rust.

In general, this crate will be conservative with respect to the minimum supported version of Rust. With async/await being a new feature though, we will track changes in a measured pace initially.

Security fixes

Security fixes will be applied to all minor branches of this library in all supported major revisions. This policy might change in the future, in which case we give a notice at least 3 months ahead.

Credits

This policy is based on BurntSushi's regex crate.



    Async concepts using async-std

Rust Futures have the reputation of being hard. We don't think this is the case. They are, in our opinion, one of the easiest concurrency concepts around and have an intuitive explanation.

However, there are good reasons for that perception. Futures have three concepts at their base that seem to be a constant source of confusion: deferred computation, asynchronicity and independence of execution strategy.

These concepts are not hard, but something many people are not used to. This base confusion is amplified by many implementations oriented on details. Most explanations of these implementations also target advanced users, and can be hard for beginners. We try to provide both easy-to-understand primitives and approachable overviews of the concepts.

Futures are a concept that abstracts over how code is run. By themselves, they do nothing. This is a weird concept in an imperative language, where usually one thing happens after the other - right now.

So how do Futures run? You decide! Futures do nothing without the piece of code executing them. This part is called an executor. An executor decides when and how to execute your futures. The async-std::task module provides you with an interface to such an executor.

Let's start with a little bit of motivation, though.



    Futures

A notable point about Rust is fearless concurrency. That is the notion that you should be empowered to do concurrent things, without giving up safety. Also, Rust being a low-level language, it's about fearless concurrency without picking a specific implementation strategy. This means we must abstract over the strategy, to allow choice later, if we want to have any way to share code between users of different strategies.

Futures abstract over computation. They describe the "what", independent of the "where" and the "when". For that, they aim to break code into small, composable actions that can then be executed by a part of our system. Let's take a tour through what it means to compute things to find where we can abstract.

Send and Sync

Luckily, concurrent Rust already has two well-known and effective concepts abstracting over sharing between concurrent parts of a program: Send and Sync. Notably, both the Send and Sync traits abstract over strategies of concurrent work, compose neatly, and don't prescribe an implementation.

As a quick summary:


	
Send abstracts over passing data in a computation to another concurrent computation (let's call it the receiver), losing access to it on the sender side. In many programming languages, this strategy is commonly implemented, but missing support from the language side, and expects you to enforce the "losing access" behaviour yourself. This is a regular source of bugs: senders keeping handles to sent things around and maybe even working with them after sending. Rust mitigates this problem by making this behaviour known. Types can be Send or not (by implementing the appropriate marker trait), allowing or disallowing sending them around, and the ownership and borrowing rules prevent subsequent access.



	
Sync is about sharing data between two concurrent parts of a program. This is another common pattern: as writing to a memory location or reading while another party is writing is inherently unsafe, this access needs to be moderated through synchronisation.1 There are many common ways for two parties to agree on not using the same part in memory at the same time, for example mutexes and spinlocks. Again, Rust gives you the option of (safely!) not caring. Rust gives you the ability to express that something needs synchronisation while not being specific about the how.





Note how we avoided any word like "thread", but instead opted for "computation". The full power of Send and Sync is that they relieve you of the burden of knowing what shares. At the point of implementation, you only need to know which method of sharing is appropriate for the type at hand. This keeps reasoning local and is not influenced by whatever implementation the user of that type later uses.

Send and Sync can be composed in interesting fashions, but that's beyond the scope here. You can find examples in the Rust Book.

To sum up: Rust gives us the ability to safely abstract over important properties of concurrent programs, their data sharing. It does so in a very lightweight fashion; the language itself only knows about the two markers Send and Sync and helps us a little by deriving them itself, when possible. The rest is a library concern.

An easy view of computation

While computation is a subject to write a whole book about, a very simplified view suffices for us: A sequence of composable operations which can branch based on a decision, run to succession and yield a result or yield an error

Deferring computation

As mentioned above, Send and Sync are about data. But programs are not only about data, they also talk about computing the data. And that's what Futures do. We are going to have a close look at how that works in the next chapter. Let's look at what Futures allow us to express, in English. Futures go from this plan:


	Do X

	If X succeeded, do Y



towards:


	Start doing X

	Once X succeeds, start doing Y



Remember the talk about "deferred computation" in the intro? That's all it is. Instead of telling the computer what to execute and decide upon now, you tell it what to start doing and how to react on potential events in the... well... Future.

Orienting towards the beginning

Let's have a look at a simple function, specifically the return value:

# use std::{fs::File, io, io::prelude::*};
#
fn read_file(path: &str) -> io::Result<String> {
    let mut file = File::open(path)?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;
    Ok(contents)
}


You can call that at any time, so you are in full control on when you call it. But here's the problem: the moment you call it, you transfer control to the called function until it returns a value - eventually.
Note that this return value talks about the past. The past has a drawback: all decisions have been made. It has an advantage: the outcome is visible. We can unwrap the results of the program's past computation, and then decide what to do with it.

But we wanted to abstract over computation and let someone else choose how to run it. That's fundamentally incompatible with looking at the results of previous computation all the time. So, let's find a type that describes a computation without running it. Let's look at the function again:

# use std::{fs::File, io, io::prelude::*};
#
fn read_file(path: &str) -> io::Result<String> {
    let mut file = File::open(path)?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;
    Ok(contents)
}


Speaking in terms of time, we can only take action before calling the function or after the function returned. This is not desirable, as it takes from us the ability to do something while it runs. When working with parallel code, this would take from us the ability to start a parallel task while the first runs (because we gave away control).

This is the moment where we could reach for threads. But threads are a very specific concurrency primitive and we said that we are searching for an abstraction.

What we are searching for is something that represents ongoing work towards a result in the future. Whenever we say "something" in Rust, we almost always mean a trait. Let's start with an incomplete definition of the Future trait:

# use std::{pin::Pin, task::{Context, Poll}};
#
trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output>;
}


Looking at it closely, we see the following:


	It is generic over the Output.

	It provides a function called poll, which allows us to check on the state of the current computation.

	(Ignore Pin and Context for now, you don't need them for high-level understanding.)



Every call to poll() can result in one of these two cases:


	The computation is done, poll will return Poll::Ready

	The computation has not finished executing, it will return Poll::Pending



This allows us to externally check if a Future still has unfinished work, or is finally done and can give us the value. The most simple (but not efficient) way would be to just constantly poll futures in a loop. There are optimisations possible, and this is what a good runtime does for you.
Note that calling poll again after case 1 happened may result in confusing behaviour. See the futures-docs for details.

Async

While the Future trait has existed in Rust for a while, it was inconvenient to build and describe them. For this, Rust now has a special syntax: async. The example from above, implemented with async-std, would look like this:

# extern crate async_std;
# use async_std::{fs::File, io, io::prelude::*};
#
async fn read_file(path: &str) -> io::Result<String> {
    let mut file = File::open(path).await?;
    let mut contents = String::new();
    file.read_to_string(&mut contents).await?;
    Ok(contents)
}


Amazingly little difference, right? All we did is label the function async and insert 2 special commands: .await.

This async function sets up a deferred computation. When this function is called, it will produce a Future<Output = io::Result<String>> instead of immediately returning a io::Result<String>. (Or, more precisely, generate a type for you that implements Future<Output = io::Result<String>>.)

What does .await do?

The .await postfix does exactly what it says on the tin: the moment you use it, the code will wait until the requested action (e.g. opening a file or reading all data in it) is finished. The .await? is not special, it's just the application of the ? operator to the result of .await. So, what is gained over the initial code example? We're getting futures and then immediately waiting for them?

The .await points act as a marker. Here, the code will wait for a Future to produce its value. How will a future finish? You don't need to care! The marker allows the component (usually called the “runtime”) in charge of executing this piece of code to take care of all the other things it has to do while the computation finishes. It will come back to this point when the operation you are doing in the background is done. This is why this style of programming is also called evented programming. We are waiting for things to happen (e.g. a file to be opened) and then react (by starting to read).

When executing 2 or more of these functions at the same time, our runtime system is then able to fill the wait time with handling all the other events currently going on.

Conclusion

Working from values, we searched for something that expresses working towards a value available later. From there, we talked about the concept of polling.

A Future is any data type that does not represent a value, but the ability to produce a value at some point in the future. Implementations of this are very varied and detailed depending on use-case, but the interface is simple.

Next, we will introduce you to tasks, which we will use to actually run Futures.

1
Two parties reading while it is guaranteed that no one is writing is always safe.





    Tasks

Now that we know what Futures are, we want to run them!

In async-std, the task module is responsible for this. The simplest way is using the block_on function:

# extern crate async_std;
use async_std::{fs::File, io, prelude::*, task};

async fn read_file(path: &str) -> io::Result<String> {
    let mut file = File::open(path).await?;
    let mut contents = String::new();
    file.read_to_string(&mut contents).await?;
    Ok(contents)
}

fn main() {
    let reader_task = task::spawn(async {
        let result = read_file("data.csv").await;
        match result {
            Ok(s) => println!("{}", s),
            Err(e) => println!("Error reading file: {:?}", e)
        }
    });
    println!("Started task!");
    task::block_on(reader_task);
    println!("Stopped task!");
}


This asks the runtime baked into async_std to execute the code that reads a file. Let's go one by one, though, inside to outside.

# extern crate async_std;
# use async_std::{fs::File, io, prelude::*, task};
#
# async fn read_file(path: &str) -> io::Result<String> {
#     let mut file = File::open(path).await?;
#     let mut contents = String::new();
#     file.read_to_string(&mut contents).await?;
#     Ok(contents)
# }
#
async {
    let result = read_file("data.csv").await;
    match result {
        Ok(s) => println!("{}", s),
        Err(e) => println!("Error reading file: {:?}", e)
    }
};


This is an async block. Async blocks are necessary to call async functions, and will instruct the compiler to include all the relevant instructions to do so. In Rust, all blocks return a value and async blocks happen to return a value of the kind Future.

But let's get to the interesting part:

# extern crate async_std;
# use async_std::task;
task::spawn(async { });


spawn takes a Future and starts running it on a Task. It returns a JoinHandle. Futures in Rust are sometimes called cold Futures. You need something that starts running them. To run a Future, there may be some additional bookkeeping required, e.g. whether it's running or finished, where it is being placed in memory and what the current state is. This bookkeeping part is abstracted away in a Task.

A Task is similar to a Thread, with some minor differences: it will be scheduled by the program instead of the operating system kernel, and if it encounters a point where it needs to wait, the program itself is responsible for waking it up again. We'll talk a little bit about that later. An async_std task can also have a name and an ID, just like a thread.

For now, it is enough to know that once you have spawned a task, it will continue running in the background. The JoinHandle is itself a future that will finish once the Task has run to conclusion. Much like with threads and the join function, we can now call block_on on the handle to block the program (or the calling thread, to be specific) and wait for it to finish.

Tasks in async_std

Tasks in async_std are one of the core abstractions. Much like Rust's threads, they provide some practical functionality over the raw concept. Tasks have a relationship to the runtime, but they are in themselves separate. async_std tasks have a number of desirable properties:


	They are allocated in one single allocation

	All tasks have a backchannel, which allows them to propagate results and errors to the spawning task through the JoinHandle

	They carry useful metadata for debugging

	They support task local storage



async_stds task API handles setup and teardown of a backing runtime for you and doesn't rely on a runtime being explicitly started.

Blocking

Tasks are assumed to run concurrently, potentially by sharing a thread of execution. This means that operations blocking an operating system thread, such as std::thread::sleep or io function from Rust's std library will stop execution of all tasks sharing this thread. Other libraries (such as database drivers) have similar behaviour. Note that blocking the current thread is not in and of itself bad behaviour, just something that does not mix well with the concurrent execution model of async-std. Essentially, never do this:

# extern crate async_std;
# use async_std::task;
fn main() {
    task::block_on(async {
        // this is std::fs, which blocks
        std::fs::read_to_string("test_file");
    })
}


If you want to mix operation kinds, consider putting such blocking operations on a separate thread.

Errors and panics

Tasks report errors through normal patterns: If they are fallible, their Output should be of kind Result<T,E>.

In case of panic, behaviour differs depending on whether there's a reasonable part that addresses the panic. If not, the program aborts.

In practice, that means that block_on propagates panics to the blocking component:

# extern crate async_std;
# use async_std::task;
fn main() {
    task::block_on(async {
        panic!("test");
    });
}


thread 'async-task-driver' panicked at 'test', examples/panic.rs:8:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace.


While panicking a spawned task will abort:

# extern crate async_std;
# use async_std::task;
# use std::time::Duration;
task::spawn(async {
    panic!("test");
});

task::block_on(async {
    task::sleep(Duration::from_millis(10000)).await;
})


thread 'async-task-driver' panicked at 'test', examples/panic.rs:8:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace.
Aborted (core dumped)


That might seem odd at first, but the other option would be to silently ignore panics in spawned tasks. The current behaviour can be changed by catching panics in the spawned task and reacting with custom behaviour. This gives users the choice of panic handling strategy.

Conclusion

async_std comes with a useful Task type that works with an API similar to std::thread. It covers error and panic behaviour in a structured and defined way.

Tasks are separate concurrent units and sometimes they need to communicate. That's where Streams come in.



    TODO: Async read/write



    TODO: Streams



    Tutorial: Writing a chat

Nothing is simpler than creating a chat server, right?
Not quite, chat servers expose you to all the fun of asynchronous programming:

How will the server handle clients connecting concurrently?

How will it handle them disconnecting?

How will it distribute the messages?

This tutorial explains how to write a chat server in async-std.

You can also find the tutorial in our repository.



    Specification and Getting Started

Specification

The chat uses a simple text protocol over TCP.
The protocol consists of utf-8 messages, separated by \n.

The client connects to the server and sends login as a first line.
After that, the client can send messages to other clients using the following syntax:

login1, login2, ... loginN: message


Each of the specified clients then receives a from login: message message.

A possible session might look like this

On Alice's computer:   |   On Bob's computer:

> alice                |   > bob
> bob: hello               < from alice: hello
                       |   > alice, bob: hi!
                           < from bob: hi!
< from bob: hi!        |


The main challenge for the chat server is keeping track of many concurrent connections.
The main challenge for the chat client is managing concurrent outgoing messages, incoming messages and user's typing.

Getting Started

Let's create a new Cargo project:

$ cargo new a-chat
$ cd a-chat


Add the following lines to Cargo.toml:

[dependencies]
futures = "0.3.0"
async-std = "1"




    Writing an Accept Loop

Let's implement the scaffold of the server: a loop that binds a TCP socket to an address and starts accepting connections.

First of all, let's add required import boilerplate:

# extern crate async_std;
use async_std::{
    prelude::*, // 1
    task, // 2
    net::{TcpListener, ToSocketAddrs}, // 3
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>; // 4



	prelude re-exports some traits required to work with futures and streams.

	The task module roughly corresponds to the std::thread module, but tasks are much lighter weight.
A single thread can run many tasks.

	For the socket type, we use TcpListener from async_std, which is just like std::net::TcpListener, but is non-blocking and uses async API.

	We will skip implementing comprehensive error handling in this example.
To propagate the errors, we will use a boxed error trait object.
Do you know that there's From<&'_ str> for Box<dyn Error> implementation in stdlib, which allows you to use strings with ? operator?



Now we can write the server's accept loop:

# extern crate async_std;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> { // 1

    let listener = TcpListener::bind(addr).await?; // 2
    let mut incoming = listener.incoming();
    while let Some(stream) = incoming.next().await { // 3
        // TODO
    }
    Ok(())
}



	We mark the accept_loop function as async, which allows us to use .await syntax inside.

	TcpListener::bind call returns a future, which we .await to extract the Result, and then ? to get a TcpListener.
Note how .await and ? work nicely together.
This is exactly how std::net::TcpListener works, but with .await added.
Mirroring API of std is an explicit design goal of async_std.

	Here, we would like to iterate incoming sockets, just how one would do in std:



let listener: std::net::TcpListener = unimplemented!();
for stream in listener.incoming() {
}


Unfortunately this doesn't quite work with async yet, because there's no support for async for-loops in the language yet.
For this reason we have to implement the loop manually, by using while let Some(item) = iter.next().await pattern.

Finally, let's add main:

# extern crate async_std;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
#     task,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
# async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> { // 1
#     let listener = TcpListener::bind(addr).await?; // 2
#     let mut incoming = listener.incoming();
#     while let Some(stream) = incoming.next().await { // 3
#         // TODO
#     }
#     Ok(())
# }
#
// main
fn run() -> Result<()> {
    let fut = accept_loop("127.0.0.1:8080");
    task::block_on(fut)
}


The crucial thing to realise that is in Rust, unlike other languages, calling an async function does not run any code.
Async functions only construct futures, which are inert state machines.
To start stepping through the future state-machine in an async function, you should use .await.
In a non-async function, a way to execute a future is to hand it to the executor.
In this case, we use task::block_on to execute a future on the current thread and block until it's done.



    Receiving messages

Let's implement the receiving part of the protocol.
We need to:


	split incoming TcpStream on \n and decode bytes as utf-8

	interpret the first line as a login

	parse the rest of the lines as a  login: message



# extern crate async_std;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
#     task,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
use async_std::{
    io::BufReader,
    net::TcpStream,
};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
    let listener = TcpListener::bind(addr).await?;
    let mut incoming = listener.incoming();
    while let Some(stream) = incoming.next().await {
        let stream = stream?;
        println!("Accepting from: {}", stream.peer_addr()?);
        let _handle = task::spawn(connection_loop(stream)); // 1
    }
    Ok(())
}

async fn connection_loop(stream: TcpStream) -> Result<()> {
    let reader = BufReader::new(&stream); // 2
    let mut lines = reader.lines();

    let name = match lines.next().await { // 3
        None => Err("peer disconnected immediately")?,
        Some(line) => line?,
    };
    println!("name = {}", name);

    while let Some(line) = lines.next().await { // 4
        let line = line?;
        let (dest, msg) = match line.find(':') { // 5
            None => continue,
            Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
        };
        let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
        let msg: String = msg.to_string();
    }
    Ok(())
}



	
We use task::spawn function to spawn an independent task for working with each client.
That is, after accepting the client the accept_loop immediately starts waiting for the next one.
This is the core benefit of event-driven architecture: we serve many clients concurrently, without spending many hardware threads.



	
Luckily, the "split byte stream into lines" functionality is already implemented.
.lines() call returns a stream of String's.



	
We get the first line -- login



	
And, once again, we implement a manual async for loop.



	
Finally, we parse each line into a list of destination logins and the message itself.





Managing Errors

One serious problem in the above solution is that, while we correctly propagate errors in the connection_loop, we just drop the error on the floor afterwards!
That is, task::spawn does not return an error immediately (it can't, it needs to run the future to completion first), only after it is joined.
We can "fix" it by waiting for the task to be joined, like this:

# #![feature(async_closure)]
# extern crate async_std;
# use async_std::{
#     io::BufReader,
#     net::{TcpListener, TcpStream, ToSocketAddrs},
#     prelude::*,
#     task,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
# async fn connection_loop(stream: TcpStream) -> Result<()> {
#     let reader = BufReader::new(&stream); // 2
#     let mut lines = reader.lines();
#
#     let name = match lines.next().await { // 3
#         None => Err("peer disconnected immediately")?,
#         Some(line) => line?,
#     };
#     println!("name = {}", name);
#
#     while let Some(line) = lines.next().await { // 4
#         let line = line?;
#         let (dest, msg) = match line.find(':') { // 5
#             None => continue,
#             Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
#         };
#         let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
#         let msg: String = msg.trim().to_string();
#     }
#     Ok(())
# }
#
# async move |stream| {
let handle = task::spawn(connection_loop(stream));
handle.await?
# };


The .await waits until the client finishes, and ? propagates the result.

There are two problems with this solution however!
First, because we immediately await the client, we can only handle one client at a time, and that completely defeats the purpose of async!
Second, if a client encounters an IO error, the whole server immediately exits.
That is, a flaky internet connection of one peer brings down the whole chat room!

A correct way to handle client errors in this case is log them, and continue serving other clients.
So let's use a helper function for this:

# extern crate async_std;
# use async_std::{
#     io,
#     prelude::*,
#     task,
# };
fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
    F: Future<Output = Result<()>> + Send + 'static,
{
    task::spawn(async move {
        if let Err(e) = fut.await {
            eprintln!("{}", e)
        }
    })
}




    Sending Messages

Now it's time to implement the other half -- sending messages.
A most obvious way to implement sending is to give each connection_loop access to the write half of TcpStream of each other clients.
That way, a client can directly .write_all a message to recipients.
However, this would be wrong: if Alice sends bob: foo, and Charley sends bob: bar, Bob might actually receive fobaor.
Sending a message over a socket might require several syscalls, so two concurrent .write_all's might interfere with each other!

As a rule of thumb, only a single task should write to each TcpStream.
So let's create a connection_writer_loop task which receives messages over a channel and writes them to the socket.
This task would be the point of serialization of messages.
if Alice and Charley send two messages to Bob at the same time, Bob will see the messages in the same order as they arrive in the channel.

# extern crate async_std;
# extern crate futures;
# use async_std::{
#     net::TcpStream,
#     prelude::*,
# };
use futures::channel::mpsc; // 1
use futures::sink::SinkExt;
use std::sync::Arc;

# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
type Sender<T> = mpsc::UnboundedSender<T>; // 2
type Receiver<T> = mpsc::UnboundedReceiver<T>;

async fn connection_writer_loop(
    mut messages: Receiver<String>,
    stream: Arc<TcpStream>, // 3
) -> Result<()> {
    let mut stream = &*stream;
    while let Some(msg) = messages.next().await {
        stream.write_all(msg.as_bytes()).await?;
    }
    Ok(())
}



	We will use channels from the futures crate.

	For simplicity, we will use unbounded channels, and won't be discussing backpressure in this tutorial.

	As connection_loop and connection_writer_loop share the same TcpStream, we need to put it into an Arc.
Note that because client only reads from the stream and connection_writer_loop only writes to the stream, we don't get a race here.





    Connecting Readers and Writers

So how do we make sure that messages read in connection_loop flow into the relevant connection_writer_loop?
We should somehow maintain a peers: HashMap<String, Sender<String>> map which allows a client to find destination channels.
However, this map would be a bit of shared mutable state, so we'll have to wrap an RwLock over it and answer tough questions of what should happen if the client joins at the same moment as it receives a message.

One trick to make reasoning about state simpler comes from the actor model.
We can create a dedicated broker task which owns the peers map and communicates with other tasks using channels.
By hiding peers inside such an "actor" task, we remove the need for mutexes and also make the serialization point explicit.
The order of events "Bob sends message to Alice" and "Alice joins" is determined by the order of the corresponding events in the broker's event queue.

# extern crate async_std;
# extern crate futures;
# use async_std::{
#     net::TcpStream,
#     prelude::*,
#     task,
# };
# use futures::channel::mpsc;
# use futures::sink::SinkExt;
# use std::sync::Arc;
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
# type Sender<T> = mpsc::UnboundedSender<T>;
# type Receiver<T> = mpsc::UnboundedReceiver<T>;
#
# async fn connection_writer_loop(
#     mut messages: Receiver<String>,
#     stream: Arc<TcpStream>,
# ) -> Result<()> {
#     let mut stream = &*stream;
#     while let Some(msg) = messages.next().await {
#         stream.write_all(msg.as_bytes()).await?;
#     }
#     Ok(())
# }
#
# fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
# where
#     F: Future<Output = Result<()>> + Send + 'static,
# {
#     task::spawn(async move {
#         if let Err(e) = fut.await {
#             eprintln!("{}", e)
#         }
#     })
# }
#
use std::collections::hash_map::{Entry, HashMap};

#[derive(Debug)]
enum Event { // 1
    NewPeer {
        name: String,
        stream: Arc<TcpStream>,
    },
    Message {
        from: String,
        to: Vec<String>,
        msg: String,
    },
}

async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
    let mut peers: HashMap<String, Sender<String>> = HashMap::new(); // 2

    while let Some(event) = events.next().await {
        match event {
            Event::Message { from, to, msg } => {  // 3
                for addr in to {
                    if let Some(peer) = peers.get_mut(&addr) {
                        let msg = format!("from {}: {}\n", from, msg);
                        peer.send(msg).await?
                    }
                }
            }
            Event::NewPeer { name, stream } => {
                match peers.entry(name) {
                    Entry::Occupied(..) => (),
                    Entry::Vacant(entry) => {
                        let (client_sender, client_receiver) = mpsc::unbounded();
                        entry.insert(client_sender); // 4
                        spawn_and_log_error(connection_writer_loop(client_receiver, stream)); // 5
                    }
                }
            }
        }
    }
    Ok(())
}



	The broker task should handle two types of events: a message or an arrival of a new peer.

	The internal state of the broker is a HashMap.
Note how we don't need a Mutex here and can confidently say, at each iteration of the broker's loop, what is the current set of peers

	To handle a message, we send it over a channel to each destination

	To handle a new peer, we first register it in the peer's map ...

	... and then spawn a dedicated task to actually write the messages to the socket.





    All Together

At this point, we only need to start the broker to get a fully-functioning (in the happy case!) chat:

# extern crate async_std;
# extern crate futures;
use async_std::{
    io::BufReader,
    net::{TcpListener, TcpStream, ToSocketAddrs},
    prelude::*,
    task,
};
use futures::channel::mpsc;
use futures::sink::SinkExt;
use std::{
    collections::hash_map::{HashMap, Entry},
    sync::Arc,
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
type Sender<T> = mpsc::UnboundedSender<T>;
type Receiver<T> = mpsc::UnboundedReceiver<T>;

// main
fn run() -> Result<()> {
    task::block_on(accept_loop("127.0.0.1:8080"))
}

fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
    F: Future<Output = Result<()>> + Send + 'static,
{
    task::spawn(async move {
        if let Err(e) = fut.await {
            eprintln!("{}", e)
        }
    })
}

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
    let listener = TcpListener::bind(addr).await?;

    let (broker_sender, broker_receiver) = mpsc::unbounded(); // 1
    let _broker_handle = task::spawn(broker_loop(broker_receiver));
    let mut incoming = listener.incoming();
    while let Some(stream) = incoming.next().await {
        let stream = stream?;
        println!("Accepting from: {}", stream.peer_addr()?);
        spawn_and_log_error(connection_loop(broker_sender.clone(), stream));
    }
    Ok(())
}

async fn connection_loop(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
    let stream = Arc::new(stream); // 2
    let reader = BufReader::new(&*stream);
    let mut lines = reader.lines();

    let name = match lines.next().await {
        None => Err("peer disconnected immediately")?,
        Some(line) => line?,
    };
    broker.send(Event::NewPeer { name: name.clone(), stream: Arc::clone(&stream) }).await // 3
        .unwrap();

    while let Some(line) = lines.next().await {
        let line = line?;
        let (dest, msg) = match line.find(':') {
            None => continue,
            Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
        };
        let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
        let msg: String = msg.to_string();

        broker.send(Event::Message { // 4
            from: name.clone(),
            to: dest,
            msg,
        }).await.unwrap();
    }
    Ok(())
}

async fn connection_writer_loop(
    mut messages: Receiver<String>,
    stream: Arc<TcpStream>,
) -> Result<()> {
    let mut stream = &*stream;
    while let Some(msg) = messages.next().await {
        stream.write_all(msg.as_bytes()).await?;
    }
    Ok(())
}

#[derive(Debug)]
enum Event {
    NewPeer {
        name: String,
        stream: Arc<TcpStream>,
    },
    Message {
        from: String,
        to: Vec<String>,
        msg: String,
    },
}

async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
    let mut peers: HashMap<String, Sender<String>> = HashMap::new();

    while let Some(event) = events.next().await {
        match event {
            Event::Message { from, to, msg } => {
                for addr in to {
                    if let Some(peer) = peers.get_mut(&addr) {
                        let msg = format!("from {}: {}\n", from, msg);
                        peer.send(msg).await?
                    }
                }
            }
            Event::NewPeer { name, stream} => {
                match peers.entry(name) {
                    Entry::Occupied(..) => (),
                    Entry::Vacant(entry) => {
                        let (client_sender, client_receiver) = mpsc::unbounded();
                        entry.insert(client_sender);
                        spawn_and_log_error(connection_writer_loop(client_receiver, stream));
                    }
                }
            }
        }
    }
    Ok(())
}



	Inside the accept_loop, we create the broker's channel and task.

	Inside connection_loop, we need to wrap TcpStream into an Arc, to be able to share it with the connection_writer_loop.

	On login, we notify the broker.
Note that we .unwrap on send: broker should outlive all the clients and if that's not the case the broker probably panicked, so we can escalate the panic as well.

	Similarly, we forward parsed messages to the broker, assuming that it is alive.





    Clean Shutdown

One of the problems of the current implementation is that it doesn't handle graceful shutdown.
If we break from the accept loop for some reason, all in-flight tasks are just dropped on the floor.
A more correct shutdown sequence would be:


	Stop accepting new clients

	Deliver all pending messages

	Exit the process



A clean shutdown in a channel based architecture is easy, although it can appear a magic trick at first.
In Rust, receiver side of a channel is closed as soon as all senders are dropped.
That is, as soon as producers exit and drop their senders, the rest of the system shuts down naturally.
In async_std this translates to two rules:


	Make sure that channels form an acyclic graph.

	Take care to wait, in the correct order, until intermediate layers of the system process pending messages.



In a-chat, we already have an unidirectional flow of messages: reader -> broker -> writer.
However, we never wait for broker and writers, which might cause some messages to get dropped.
Let's add waiting to the server:

# extern crate async_std;
# extern crate futures;
# use async_std::{
#     io::{self, BufReader},
#     net::{TcpListener, TcpStream, ToSocketAddrs},
#     prelude::*,
#     task,
# };
# use futures::channel::mpsc;
# use futures::sink::SinkExt;
# use std::{
#     collections::hash_map::{HashMap, Entry},
#     sync::Arc,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
# type Sender<T> = mpsc::UnboundedSender<T>;
# type Receiver<T> = mpsc::UnboundedReceiver<T>;
#
# fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
# where
#     F: Future<Output = Result<()>> + Send + 'static,
# {
#     task::spawn(async move {
#         if let Err(e) = fut.await {
#             eprintln!("{}", e)
#         }
#     })
# }
#
#
# async fn connection_loop(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
#     let stream = Arc::new(stream); // 2
#     let reader = BufReader::new(&*stream);
#     let mut lines = reader.lines();
#
#     let name = match lines.next().await {
#         None => Err("peer disconnected immediately")?,
#         Some(line) => line?,
#     };
#     broker.send(Event::NewPeer { name: name.clone(), stream: Arc::clone(&stream) }).await // 3
#         .unwrap();
#
#     while let Some(line) = lines.next().await {
#         let line = line?;
#         let (dest, msg) = match line.find(':') {
#             None => continue,
#             Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
#         };
#         let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
#         let msg: String = msg.trim().to_string();
#
#         broker.send(Event::Message { // 4
#             from: name.clone(),
#             to: dest,
#             msg,
#         }).await.unwrap();
#     }
#     Ok(())
# }
#
# async fn connection_writer_loop(
#     mut messages: Receiver<String>,
#     stream: Arc<TcpStream>,
# ) -> Result<()> {
#     let mut stream = &*stream;
#     while let Some(msg) = messages.next().await {
#         stream.write_all(msg.as_bytes()).await?;
#     }
#     Ok(())
# }
#
# #[derive(Debug)]
# enum Event {
#     NewPeer {
#         name: String,
#         stream: Arc<TcpStream>,
#     },
#     Message {
#         from: String,
#         to: Vec<String>,
#         msg: String,
#     },
# }
#
# async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
#     let mut peers: HashMap<String, Sender<String>> = HashMap::new();
#
#     while let Some(event) = events.next().await {
#         match event {
#             Event::Message { from, to, msg } => {
#                 for addr in to {
#                     if let Some(peer) = peers.get_mut(&addr) {
#                         let msg = format!("from {}: {}\n", from, msg);
#                         peer.send(msg).await?
#                     }
#                 }
#             }
#             Event::NewPeer { name, stream} => {
#                 match peers.entry(name) {
#                     Entry::Occupied(..) => (),
#                     Entry::Vacant(entry) => {
#                         let (client_sender, client_receiver) = mpsc::unbounded();
#                         entry.insert(client_sender); // 4
#                         spawn_and_log_error(connection_writer_loop(client_receiver, stream)); // 5
#                     }
#                 }
#             }
#         }
#     }
#     Ok(())
# }
#
async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
    let listener = TcpListener::bind(addr).await?;

    let (broker_sender, broker_receiver) = mpsc::unbounded();
    let broker_handle = task::spawn(broker_loop(broker_receiver));
    let mut incoming = listener.incoming();
    while let Some(stream) = incoming.next().await {
        let stream = stream?;
        println!("Accepting from: {}", stream.peer_addr()?);
        spawn_and_log_error(connection_loop(broker_sender.clone(), stream));
    }
    drop(broker_sender); // 1
    broker_handle.await?; // 5
    Ok(())
}


And to the broker:

# extern crate async_std;
# extern crate futures;
# use async_std::{
#     io::{self, BufReader},
#     net::{TcpListener, TcpStream, ToSocketAddrs},
#     prelude::*,
#     task,
# };
# use futures::channel::mpsc;
# use futures::sink::SinkExt;
# use std::{
#     collections::hash_map::{HashMap, Entry},
#     sync::Arc,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
# type Sender<T> = mpsc::UnboundedSender<T>;
# type Receiver<T> = mpsc::UnboundedReceiver<T>;
#
# async fn connection_writer_loop(
#     mut messages: Receiver<String>,
#     stream: Arc<TcpStream>,
# ) -> Result<()> {
#     let mut stream = &*stream;
#     while let Some(msg) = messages.next().await {
#         stream.write_all(msg.as_bytes()).await?;
#     }
#     Ok(())
# }
#
# fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
# where
#     F: Future<Output = Result<()>> + Send + 'static,
# {
#     task::spawn(async move {
#         if let Err(e) = fut.await {
#             eprintln!("{}", e)
#         }
#     })
# }
#
# #[derive(Debug)]
# enum Event {
#     NewPeer {
#         name: String,
#         stream: Arc<TcpStream>,
#     },
#     Message {
#         from: String,
#         to: Vec<String>,
#         msg: String,
#     },
# }
#
async fn broker_loop(mut events: Receiver<Event>) -> Result<()> {
    let mut writers = Vec::new();
    let mut peers: HashMap<String, Sender<String>> = HashMap::new();
    while let Some(event) = events.next().await { // 2
        match event {
            Event::Message { from, to, msg } => {
                for addr in to {
                    if let Some(peer) = peers.get_mut(&addr) {
                        let msg = format!("from {}: {}\n", from, msg);
                        peer.send(msg).await?
                    }
                }
            }
            Event::NewPeer { name, stream} => {
                match peers.entry(name) {
                    Entry::Occupied(..) => (),
                    Entry::Vacant(entry) => {
                        let (client_sender, client_receiver) = mpsc::unbounded();
                        entry.insert(client_sender);
                        let handle = spawn_and_log_error(connection_writer_loop(client_receiver, stream));
                        writers.push(handle); // 4
                    }
                }
            }
        }
    }
    drop(peers); // 3
    for writer in writers { // 4
        writer.await;
    }
    Ok(())
}


Notice what happens with all of the channels once we exit the accept loop:


	First, we drop the main broker's sender.
That way when the readers are done, there's no sender for the broker's channel, and the channel closes.

	Next, the broker exits while let Some(event) = events.next().await loop.

	It's crucial that, at this stage, we drop the peers map.
This drops writer's senders.

	Now we can join all of the writers.

	Finally, we join the broker, which also guarantees that all the writes have terminated.





    Handling Disconnections

Currently, we only ever add new peers to the map.
This is clearly wrong: if a peer closes connection to the chat, we should not try to send any more messages to it.

One subtlety with handling disconnection is that we can detect it either in the reader's task, or in the writer's task.
The most obvious solution here is to just remove the peer from the peers map in both cases, but this would be wrong.
If both read and write fail, we'll remove the peer twice, but it can be the case that the peer reconnected between the two failures!
To fix this, we will only remove the peer when the write side finishes.
If the read side finishes we will notify the write side that it should stop as well.
That is, we need to add an ability to signal shutdown for the writer task.

One way to approach this is a shutdown: Receiver<()> channel.
There's a more minimal solution however, which makes clever use of RAII.
Closing a channel is a synchronization event, so we don't need to send a shutdown message, we can just drop the sender.
This way, we statically guarantee that we issue shutdown exactly once, even if we early return via ? or panic.

First, let's add a shutdown channel to the connection_loop:

# extern crate async_std;
# extern crate futures;
# use async_std::net::TcpStream;
# use futures::channel::mpsc;
# use futures::sink::SinkExt;
# use std::sync::Arc;
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
# type Sender<T> = mpsc::UnboundedSender<T>;
# type Receiver<T> = mpsc::UnboundedReceiver<T>;
#
#[derive(Debug)]
enum Void {} // 1

#[derive(Debug)]
enum Event {
    NewPeer {
        name: String,
        stream: Arc<TcpStream>,
        shutdown: Receiver<Void>, // 2
    },
    Message {
        from: String,
        to: Vec<String>,
        msg: String,
    },
}

async fn connection_loop(mut broker: Sender<Event>, stream: Arc<TcpStream>) -> Result<()> {
    // ...
#   let name: String = unimplemented!();
    let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>(); // 3
    broker.send(Event::NewPeer {
        name: name.clone(),
        stream: Arc::clone(&stream),
        shutdown: shutdown_receiver,
    }).await.unwrap();
    // ...
#   unimplemented!()
}



	To enforce that no messages are sent along the shutdown channel, we use an uninhabited type.

	We pass the shutdown channel to the writer task.

	In the reader, we create a _shutdown_sender whose only purpose is to get dropped.



In the connection_writer_loop, we now need to choose between shutdown and message channels.
We use the select macro for this purpose:

# extern crate async_std;
# extern crate futures;
# use async_std::{net::TcpStream, prelude::*};
# use futures::channel::mpsc;
use futures::{select, FutureExt};
# use std::sync::Arc;
# type Receiver<T> = mpsc::UnboundedReceiver<T>;
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
# type Sender<T> = mpsc::UnboundedSender<T>;
# #[derive(Debug)]
# enum Void {} // 1

async fn connection_writer_loop(
    messages: &mut Receiver<String>,
    stream: Arc<TcpStream>,
    shutdown: Receiver<Void>, // 1
) -> Result<()> {
    let mut stream = &*stream;
    let mut messages = messages.fuse();
    let mut shutdown = shutdown.fuse();
    loop { // 2
        select! {
            msg = messages.next().fuse() => match msg { // 3
                Some(msg) => stream.write_all(msg.as_bytes()).await?,
                None => break,
            },
            void = shutdown.next().fuse() => match void {
                Some(void) => match void {}, // 4
                None => break,
            }
        }
    }
    Ok(())
}



	We add shutdown channel as an argument.

	Because of select, we can't use a while let loop, so we desugar it further into a loop.

	Function fuse() is used to turn any Stream into a FusedStream. This is used for fusing a stream such that poll_next will never again be called once it has finished.

	In the shutdown case we use match void {} as a statically-checked unreachable!().



Another problem is that between the moment we detect disconnection in connection_writer_loop and the moment when we actually remove the peer from the peers map, new messages might be pushed into the peer's channel.
To not lose these messages completely, we'll return the messages channel back to the broker.
This also allows us to establish a useful invariant that the message channel strictly outlives the peer in the peers map, and makes the broker itself infallible.

Final Code

The final code looks like this:

# extern crate async_std;
# extern crate futures;
use async_std::{
    io::BufReader,
    net::{TcpListener, TcpStream, ToSocketAddrs},
    prelude::*,
    task,
};
use futures::channel::mpsc;
use futures::sink::SinkExt;
use futures::{select, FutureExt};
use std::{
    collections::hash_map::{Entry, HashMap},
    future::Future,
    sync::Arc,
};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
type Sender<T> = mpsc::UnboundedSender<T>;
type Receiver<T> = mpsc::UnboundedReceiver<T>;

#[derive(Debug)]
enum Void {}

// main
fn run() -> Result<()> {
    task::block_on(accept_loop("127.0.0.1:8080"))
}

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
    let listener = TcpListener::bind(addr).await?;
    let (broker_sender, broker_receiver) = mpsc::unbounded();
    let broker_handle = task::spawn(broker_loop(broker_receiver));
    let mut incoming = listener.incoming();
    while let Some(stream) = incoming.next().await {
        let stream = stream?;
        println!("Accepting from: {}", stream.peer_addr()?);
        spawn_and_log_error(connection_loop(broker_sender.clone(), stream));
    }
    drop(broker_sender);
    broker_handle.await;
    Ok(())
}

async fn connection_loop(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
    let stream = Arc::new(stream);
    let reader = BufReader::new(&*stream);
    let mut lines = reader.lines();

    let name = match lines.next().await {
        None => Err("peer disconnected immediately")?,
        Some(line) => line?,
    };
    let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>();
    broker.send(Event::NewPeer {
        name: name.clone(),
        stream: Arc::clone(&stream),
        shutdown: shutdown_receiver,
    }).await.unwrap();

    while let Some(line) = lines.next().await {
        let line = line?;
        let (dest, msg) = match line.find(':') {
            None => continue,
            Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
        };
        let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
        let msg: String = msg.trim().to_string();

        broker.send(Event::Message {
            from: name.clone(),
            to: dest,
            msg,
        }).await.unwrap();
    }

    Ok(())
}

async fn connection_writer_loop(
    messages: &mut Receiver<String>,
    stream: Arc<TcpStream>,
    shutdown: Receiver<Void>,
) -> Result<()> {
    let mut stream = &*stream;
    let mut messages = messages.fuse();
    let mut shutdown = shutdown.fuse();
    loop {
        select! {
            msg = messages.next().fuse() => match msg {
                Some(msg) => stream.write_all(msg.as_bytes()).await?,
                None => break,
            },
            void = shutdown.next().fuse() => match void {
                Some(void) => match void {},
                None => break,
            }
        }
    }
    Ok(())
}

#[derive(Debug)]
enum Event {
    NewPeer {
        name: String,
        stream: Arc<TcpStream>,
        shutdown: Receiver<Void>,
    },
    Message {
        from: String,
        to: Vec<String>,
        msg: String,
    },
}

async fn broker_loop(events: Receiver<Event>) {
    let (disconnect_sender, mut disconnect_receiver) = // 1
        mpsc::unbounded::<(String, Receiver<String>)>();
    let mut peers: HashMap<String, Sender<String>> = HashMap::new();
    let mut events = events.fuse();
    loop {
        let event = select! {
            event = events.next().fuse() => match event {
                None => break, // 2
                Some(event) => event,
            },
            disconnect = disconnect_receiver.next().fuse() => {
                let (name, _pending_messages) = disconnect.unwrap(); // 3
                assert!(peers.remove(&name).is_some());
                continue;
            },
        };
        match event {
            Event::Message { from, to, msg } => {
                for addr in to {
                    if let Some(peer) = peers.get_mut(&addr) {
                        let msg = format!("from {}: {}\n", from, msg);
                        peer.send(msg).await
                            .unwrap() // 6
                    }
                }
            }
            Event::NewPeer { name, stream, shutdown } => {
                match peers.entry(name.clone()) {
                    Entry::Occupied(..) => (),
                    Entry::Vacant(entry) => {
                        let (client_sender, mut client_receiver) = mpsc::unbounded();
                        entry.insert(client_sender);
                        let mut disconnect_sender = disconnect_sender.clone();
                        spawn_and_log_error(async move {
                            let res = connection_writer_loop(&mut client_receiver, stream, shutdown).await;
                            disconnect_sender.send((name, client_receiver)).await // 4
                                .unwrap();
                            res
                        });
                    }
                }
            }
        }
    }
    drop(peers); // 5
    drop(disconnect_sender); // 6
    while let Some((_name, _pending_messages)) = disconnect_receiver.next().await {
    }
}

fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
    F: Future<Output = Result<()>> + Send + 'static,
{
    task::spawn(async move {
        if let Err(e) = fut.await {
            eprintln!("{}", e)
        }
    })
}



	In the broker, we create a channel to reap disconnected peers and their undelivered messages.

	The broker's main loop exits when the input events channel is exhausted (that is, when all readers exit).

	Because broker itself holds a disconnect_sender, we know that the disconnections channel can't be fully drained in the main loop.

	We send peer's name and pending messages to the disconnections channel in both the happy and the not-so-happy path.
Again, we can safely unwrap because the broker outlives writers.

	We drop peers map to close writers' messages channel and shut down the writers for sure.
It is not strictly necessary in the current setup, where the broker waits for readers' shutdown anyway.
However, if we add a server-initiated shutdown (for example, kbd:[ctrl+c] handling), this will be a way for the broker to shutdown the writers.

	Finally, we close and drain the disconnections channel.





    Implementing a client

Since the protocol is line-based, implementing a client for the chat is straightforward:


	Lines read from stdin should be sent over the socket.

	Lines read from the socket should be echoed to stdout.



Although async does not significantly affect client performance (as unlike the server, the client interacts solely with one user and only needs limited concurrency), async is still useful for managing concurrency!

The client has to read from stdin and the socket simultaneously.
Programming this with threads is cumbersome, especially when implementing a clean shutdown.
With async, the select! macro is all that is needed.

# extern crate async_std;
# extern crate futures;
use async_std::{
    io::{stdin, BufReader},
    net::{TcpStream, ToSocketAddrs},
    prelude::*,
    task,
};
use futures::{select, FutureExt};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;

// main
fn run() -> Result<()> {
    task::block_on(try_run("127.0.0.1:8080"))
}

async fn try_run(addr: impl ToSocketAddrs) -> Result<()> {
    let stream = TcpStream::connect(addr).await?;
    let (reader, mut writer) = (&stream, &stream); // 1
    let mut lines_from_server = BufReader::new(reader).lines().fuse(); // 2
    let mut lines_from_stdin = BufReader::new(stdin()).lines().fuse(); // 2
    loop {
        select! { // 3
            line = lines_from_server.next().fuse() => match line {
                Some(line) => {
                    let line = line?;
                    println!("{}", line);
                },
                None => break,
            },
            line = lines_from_stdin.next().fuse() => match line {
                Some(line) => {
                    let line = line?;
                    writer.write_all(line.as_bytes()).await?;
                    writer.write_all(b"\n").await?;
                }
                None => break,
            }
        }
    }
    Ok(())
}



	Here we split TcpStream into read and write halves: there's impl AsyncRead for &'_ TcpStream, just like the one in std.

	We create a stream of lines for both the socket and stdin.

	In the main select loop, we print the lines we receive from the server and send the lines we read from the console.





    Patterns

This section documents small, useful patterns.

It is intended to be read at a glance, allowing you to get back when you have a problem.



    Small Patterns

A collection of small, useful patterns.

Splitting streams

async-std doesn't provide a split() method on io handles. Instead, splitting a stream into a read and write half can be done like this:

# extern crate async_std;
use async_std::{io, net::TcpStream};
async fn echo(stream: TcpStream) {
    let (reader, writer) = &mut (&stream, &stream);
    io::copy(reader, writer).await;
}




    Production-Ready Accept Loop

A production-ready accept loop needs the following things:


	Handling errors

	Limiting the number of simultanteous connections to avoid deny-of-service
(DoS) attacks



Handling errors

There are two kinds of errors in an accept loop:


	Per-connection errors. The system uses them to notify that there was a
connection in the queue and it's dropped by the peer. Subsequent connections
can be already queued so next connection must be accepted immediately.

	Resource shortages. When these are encountered it doesn't make sense to
accept the next socket immediately. But the listener stays active, so you server
should try to accept socket later.



Here is the example of a per-connection error (printed in normal and debug mode):

Error: Connection reset by peer (os error 104)
Error: Os { code: 104, kind: ConnectionReset, message: "Connection reset by peer" }


And the following is the most common example of a resource shortage error:

Error: Too many open files (os error 24)
Error: Os { code: 24, kind: Other, message: "Too many open files" }


Testing Application

To test your application for these errors try the following (this works
on unixes only).

Lower limits and start the application:

$ ulimit -n 100
$ cargo run --example your_app
   Compiling your_app v0.1.0 (/work)
    Finished dev [unoptimized + debuginfo] target(s) in 5.47s
     Running `target/debug/examples/your_app`
Server is listening on: http://127.0.0.1:1234


Then in another console run the wrk benchmark tool:

$ wrk -c 1000 http://127.0.0.1:1234
Running 10s test @ http://localhost:8080/
  2 threads and 1000 connections
$ telnet localhost 1234
Trying ::1...
Connected to localhost.


Important is to check the following things:


	The application doesn't crash on error (but may log errors, see below)

	It's possible to connect to the application again once load is stopped
(few seconds after wrk). This is what telnet does in example above,
make sure it prints Connected to <hostname>.

	The Too many open files error is logged in the appropriate log. This
requires to set "maximum number of simultaneous connections" parameter (see
below) of your application to a value greater then 100 for this example.

	Check CPU usage of the app while doing a test. It should not occupy 100%
of a single CPU core (it's unlikely that you can exhaust CPU by 1000
connections in Rust, so this means error handling is not right).



Testing non-HTTP applications

If it's possible, use the appropriate benchmark tool and set the appropriate
number of connections. For example redis-benchmark has a -c parameter for
that, if you implement redis protocol.

Alternatively, can still use wrk, just make sure that connection is not
immediately closed. If it is, put a temporary timeout before handing
the connection to the protocol handler, like this:

# extern crate async_std;
# use std::time::Duration;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
#async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
#    let listener = TcpListener::bind(addr).await?;
#    let mut incoming = listener.incoming();
while let Some(stream) = incoming.next().await {
    task::spawn(async {
        task::sleep(Duration::from_secs(10)).await; // 1
        connection_loop(stream).await;
    });
}
#     Ok(())
# }



	Make sure the sleep coroutine is inside the spawned task, not in the loop.



Handling Errors Manually

Here is how basic accept loop could look like:

# extern crate async_std;
# use std::time::Duration;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {
    let listener = TcpListener::bind(addr).await?;
    let mut incoming = listener.incoming();
    while let Some(result) = incoming.next().await {
        let stream = match result {
            Err(ref e) if is_connection_error(e) => continue, // 1
            Err(e) => {
                eprintln!("Error: {}. Pausing for 500ms.", e); // 3
                task::sleep(Duration::from_millis(500)).await; // 2
                continue;
            }
            Ok(s) => s,
        };
        // body
    }
    Ok(())
}



	Ignore per-connection errors.

	Sleep and continue on resource shortage.

	It's important to log the message, because these errors commonly mean the
misconfiguration of the system and are helpful for operations people running
the application.



Be sure to test your application.

External Crates

The crate async-listen has a helper to achieve this task:

# extern crate async_std;
# extern crate async_listen;
# use std::time::Duration;
# use async_std::{
#     net::{TcpListener, ToSocketAddrs},
#     prelude::*,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
use async_listen::{ListenExt, error_hint};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {

    let listener = TcpListener::bind(addr).await?;
    let mut incoming = listener
        .incoming()
        .log_warnings(log_accept_error) // 1
        .handle_errors(Duration::from_millis(500));
    while let Some(socket) = incoming.next().await { // 2
        // body
    }
    Ok(())
}

fn log_accept_error(e: &io::Error) {
    eprintln!("Error: {}. Listener paused for 0.5s. {}", e, error_hint(e)) // 3
}



	Logs resource shortages (async-listen calls them warnings). If you use
log crate or any other in your app this should go to the log.

	Stream yields sockets without Result wrapper after handle_errors because
all errors are already handled.

	Together with the error we print a hint, which explains some errors for end
users. For example, it recommends increasing open file limit and gives
a link.



Be sure to test your application.

Connections Limit

Even if you've applied everything described in
Handling Errors section, there is still a problem.

Let's imagine you have a server that needs to open a file to process
client request. At some point, you might encounter the following situation:


	There are as many client connection as max file descriptors allowed for
the application.

	Listener gets Too many open files error so it sleeps.

	Some client sends a request via the previously open connection.

	Opening a file to serve request fails, because of the same
Too many open files error, until some other client drops a connection.



There are many more possible situations, this is just a small illustation that
limiting number of connections is very useful. Generally, it's one of the ways
to control resources used by a server and avoiding some kinds of deny of
service (DoS) attacks.

async-listen crate

Limiting maximum number of simultaneous connections with async-listen
looks like the following:

# extern crate async_std;
# extern crate async_listen;
# use std::time::Duration;
# use async_std::{
#     net::{TcpListener, TcpStream, ToSocketAddrs},
#     prelude::*,
# };
#
# type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#
use async_listen::{ListenExt, Token, error_hint};

async fn accept_loop(addr: impl ToSocketAddrs) -> Result<()> {

    let listener = TcpListener::bind(addr).await?;
    let mut incoming = listener
        .incoming()
        .log_warnings(log_accept_error)
        .handle_errors(Duration::from_millis(500)) // 1
        .backpressure(100);
    while let Some((token, socket)) = incoming.next().await { // 2
         task::spawn(async move {
             connection_loop(&token, stream).await; // 3
         });
    }
    Ok(())
}
async fn connection_loop(_token: &Token, stream: TcpStream) { // 4
    // ...
}
# fn log_accept_error(e: &io::Error) {
#     eprintln!("Error: {}. Listener paused for 0.5s. {}", e, error_hint(e));
# }



	We need to handle errors first, because backpressure helper expects
stream of TcpStream rather than Result.

	The token yielded by a new stream is what is counted by backpressure helper.
I.e. if you drop a token, new connection can be established.

	We give the connection loop a reference to token to bind token's lifetime to
the lifetime of the connection.

	The token itsellf in the function can be ignored, hence _token



Be sure to test this behavior.



    Security

Writing a highly performant async core library is a task involving some instances of unsafe code.

We take great care in vetting all unsafe code included in async-std and do follow generally accepted practices.

In the case that you find a security-related bug in our library, please get in touch with our security contact.

Patches improving the resilience of the library or the testing setup are happily accepted on our github org.



    Policy

Safety is one of the core principles of what we do, and to that end, we would like to ensure that async-std has a secure implementation. Thank you for taking the time to responsibly disclose any issues you find.

All security bugs in async-std distribution should be reported by email to florian.gilcher@ferrous-systems.com. This list is delivered to a small security team. Your email will be acknowledged within 24 hours, and you’ll receive a more detailed response to your email within 48 hours indicating the next steps in handling your report. If you would like, you can encrypt your report using our public key. This key is also On MIT’s keyserver and reproduced below.

Be sure to use a descriptive subject line to avoid having your report be missed. After the initial reply to your report, the security team will endeavor to keep you informed of the progress being made towards a fix and full announcement. As recommended by RFPolicy, these updates will be sent at least every five days. In reality, this is more likely to be every 24-48 hours.

If you have not received a reply to your email within 48 hours, or have not heard from the security team for the past five days, there are a few steps you can take (in order):


	Post on our Community forums



Please note that the discussion forums are public areas. When escalating in these venues, please do not discuss your issue. Simply say that you’re trying to get a hold of someone from the security team.

Disclosure policy

The async-std project has a 5 step disclosure process.


	The security report is received and is assigned a primary handler. This person will coordinate the fix and release process.

	The problem is confirmed and a list of all affected versions is determined.

	Code is audited to find any potential similar problems.

	Fixes are prepared for all releases which are still under maintenance. These fixes are not committed to the public repository but rather held locally pending the announcement.

	On the embargo date, the changes are pushed to the public repository and new builds are deployed to crates.io. Within 6 hours, a copy of the advisory will be published on the the async.rs blog.



This process can take some time, especially when coordination is required with maintainers of other projects. Every effort will be made to handle the bug in as timely a manner as possible, however it's important that we follow the release process above to ensure that the disclosure is handled in a consistent manner.

Credits

This policy is adapted from the Rust project security policy.

PGP Key

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBF1Wu/ABCADJaGt4HwSlqKB9BGHWYKZj/6mTMbmc29vsEOcCSQKo6myCf9zc
sasWAttep4FAUDX+MJhVbBTSq9M1YVxp33Qh5AF0t9SnJZnbI+BZuGawcHDL01xE
bE+8bcA2+szeTTUZCeWwsaoTd/2qmQKvpUCBQp7uBs/ITO/I2q7+xCGXaOHZwUKc
H8SUBLd35nYFtjXAeejoZVkqG2qEjrc9bkZAwxFXi7Fw94QdkNLaCjNfKxZON/qP
A3WOpyWPr3ERk5C5prjEAvrW8kdqpTRjdmzQjsr8UEXb5GGEOo93N4OLZVQ2mXt9
dfn++GOnOk7sTxvfiDH8Ru5o4zCtKgO+r5/LABEBAAG0UkZsb3JpYW4gR2lsY2hl
ciAoU2VjdXJpdHkgY29udGFjdCBhc3luYy1zdGQpIDxmbG9yaWFuLmdpbGNoZXJA
ZmVycm91cy1zeXN0ZW1zLmNvbT6JATgEEwECACIFAl1Wu/ACGwMGCwkIBwMCBhUI
AgkKCwQWAgMBAh4BAheAAAoJEACXY97PwLtSc0AH/18yvrElVOkG0ADWX7l+JKHH
nMQtYj0Auop8d6TuKBbpwtYhwELrQoITDMV7f2XEnchNsvYxAyBZhIISmXeJboE1
KzZD1O+4QPXRcXhj+QNsKQ680mrgZXgAI2Y4ptIW9Vyw3jiHu/ZVopvDAt4li+up
3fRJGPAvGu+tclpJmA+Xam23cDj89M7/wHHgKIyT59WgFwyCgibL+NHKwg2Unzou
9uyZQnq6hf62sQTWEZIAr9BQpKmluplNIJHDeECWzZoE9ucE2ZXsq5pq9qojsAMK
yRdaFdpBcD/AxtrTKFeXGS7X7LqaljY/IFBEdJOqVNWpqSLjGWqjSLIEsc1AB0K5
AQ0EXVa78AEIAJMxBOEEW+2c3CcjFuUfcRsoBsFH3Vk+GwCbjIpNHq/eAvS1yy2L
u10U5CcT5Xb6be3AeCYv00ZHVbEi6VwoauVCSX8qDjhVzQxvNLgQ1SduobjyF6t8
3M/wTija6NvMKszyw1l2oHepxSMLej1m49DyCDFNiZm5rjQcYnFT4J71syxViqHF
v2fWCheTrHP3wfBAt5zyDet7IZd/EhYAK6xXEwr9nBPjfbaVexm2B8K6hOPNj0Bp
OKm4rcOj7JYlcxrwhMvNnwEue7MqH1oXAsoaC1BW+qs4acp/hHpesweL6Rcg1pED
OJUQd3UvRsqRK0EsorDu0oj5wt6Qp3ZEbPMAEQEAAYkBHwQYAQIACQUCXVa78AIb
DAAKCRAAl2Pez8C7Uv8bB/9scRm2wvzHLbFtcEHaHvlKO1yYfSVqKqJzIKHc7pM2
+szM8JVRTxAbzK5Xih9SB5xlekixxO2UCJI5DkJ/ir/RCcg+/CAQ8iLm2UcYAgJD
TocKiR5gjNAvUDI4tMrDLLdF+7+RCQGc7HBSxFiNBJVGAztGVh1+cQ0zaCX6Tt33
1EQtyRcPID0m6+ip5tCJN0dILC0YcwzXGrSgjB03JqItIyJEucdQz6UB84TIAGku
JJl4tktgD9T7Rb5uzRhHCSbLy89DQVvCcKD4B94ffuDW3HO8n8utDusOiZuG4BUf
WdFy6/gTLNiFbTzkq1BBJQMN1nBwGs1sn63RRgjumZ1N
=dIcF
-----END PGP PUBLIC KEY BLOCK-----




    Glossary

blocking

"blocked" generally refers to conditions that keep a task from doing its work. For example, it might need data to be sent by a client before continuing. When tasks become blocked, usually, other tasks are scheduled.

Sometimes you hear that you should never call "blocking functions" in an async context. What this refers to is functions that block the current thread and do not yield control back. This keeps the executor from using this thread to schedule another task.
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