
 Rust API Guidelines

This is a set of recommendations on how to design and present APIs for the Rust
programming language. They are authored largely by the Rust library team, based
on experiences building the Rust standard library and other crates in the Rust
ecosystem.

These are only guidelines, some more firm than others. In some cases they are
vague and still in development. Rust crate authors should consider them as a set
of important considerations in the development of idiomatic and interoperable
Rust libraries, to use as they see fit. These guidelines should not in any way
be considered a mandate that crate authors must follow, though they may find
that crates that conform well to these guidelines integrate better with the
existing crate ecosystem than those that do not.

This book is organized in two parts: the concise checklist of all individual
guidelines, suitable for quick scanning during crate reviews; and topical
chapters containing explanations of the guidelines in detail.

If you are interested in contributing to the API guidelines, check out
contributing.md and join our Gitter channel.

 Rust API Guidelines Checklist

	Naming (crate aligns with Rust naming conventions)

	
Casing conforms to RFC 430 (C-CASE)

	
Ad-hoc conversions follow as_, to_, into_ conventions (C-CONV)

	
Getter names follow Rust convention (C-GETTER)

	
Methods on collections that produce iterators follow iter, iter_mut, into_iter (C-ITER)

	
Iterator type names match the methods that produce them (C-ITER-TY)

	
Feature names are free of placeholder words (C-FEATURE)

	
Names use a consistent word order (C-WORD-ORDER)

	Interoperability (crate interacts nicely with other library functionality)

	
Types eagerly implement common traits (C-COMMON-TRAITS)

	Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug,
Display, Default

	
Conversions use the standard traits From, AsRef, AsMut (C-CONV-TRAITS)

	
Collections implement FromIterator and Extend (C-COLLECT)

	
Data structures implement Serde's Serialize, Deserialize (C-SERDE)

	
Types are Send and Sync where possible (C-SEND-SYNC)

	
Error types are meaningful and well-behaved (C-GOOD-ERR)

	
Binary number types provide Hex, Octal, Binary formatting (C-NUM-FMT)

	
Generic reader/writer functions take R: Read and W: Write by value (C-RW-VALUE)

	Macros (crate presents well-behaved macros)

	
Input syntax is evocative of the output (C-EVOCATIVE)

	
Macros compose well with attributes (C-MACRO-ATTR)

	
Item macros work anywhere that items are allowed (C-ANYWHERE)

	
Item macros support visibility specifiers (C-MACRO-VIS)

	
Type fragments are flexible (C-MACRO-TY)

	Documentation (crate is abundantly documented)

	
Crate level docs are thorough and include examples (C-CRATE-DOC)

	
All items have a rustdoc example (C-EXAMPLE)

	
Examples use ?, not try!, not unwrap (C-QUESTION-MARK)

	
Function docs include error, panic, and safety considerations (C-FAILURE)

	
Prose contains hyperlinks to relevant things (C-LINK)

	
Cargo.toml includes all common metadata (C-METADATA)

	authors, description, license, homepage, documentation, repository,
keywords, categories

	
Release notes document all significant changes (C-RELNOTES)

	
Rustdoc does not show unhelpful implementation details (C-HIDDEN)

	Predictability (crate enables legible code that acts how it looks)

	
Smart pointers do not add inherent methods (C-SMART-PTR)

	
Conversions live on the most specific type involved (C-CONV-SPECIFIC)

	
Functions with a clear receiver are methods (C-METHOD)

	
Functions do not take out-parameters (C-NO-OUT)

	
Operator overloads are unsurprising (C-OVERLOAD)

	
Only smart pointers implement Deref and DerefMut (C-DEREF)

	
Constructors are static, inherent methods (C-CTOR)

	Flexibility (crate supports diverse real-world use cases)

	
Functions expose intermediate results to avoid duplicate work (C-INTERMEDIATE)

	
Caller decides where to copy and place data (C-CALLER-CONTROL)

	
Functions minimize assumptions about parameters by using generics (C-GENERIC)

	
Traits are object-safe if they may be useful as a trait object (C-OBJECT)

	Type safety (crate leverages the type system effectively)

	
Newtypes provide static distinctions (C-NEWTYPE)

	
Arguments convey meaning through types, not bool or Option (C-CUSTOM-TYPE)

	
Types for a set of flags are bitflags, not enums (C-BITFLAG)

	
Builders enable construction of complex values (C-BUILDER)

	Dependability (crate is unlikely to do the wrong thing)

	
Functions validate their arguments (C-VALIDATE)

	
Destructors never fail (C-DTOR-FAIL)

	
Destructors that may block have alternatives (C-DTOR-BLOCK)

	Debuggability (crate is conducive to easy debugging)

	
All public types implement Debug (C-DEBUG)

	
Debug representation is never empty (C-DEBUG-NONEMPTY)

	Future proofing (crate is free to improve without breaking users' code)

	
Sealed traits protect against downstream implementations (C-SEALED)

	
Structs have private fields (C-STRUCT-PRIVATE)

	
Newtypes encapsulate implementation details (C-NEWTYPE-HIDE)

	
Data structures do not duplicate derived trait bounds (C-STRUCT-BOUNDS)

	Necessities (to whom they matter, they really matter)

	
Public dependencies of a stable crate are stable (C-STABLE)

	
Crate and its dependencies have a permissive license (C-PERMISSIVE)

 Naming

Casing conforms to RFC 430 (C-CASE)

Basic Rust naming conventions are described in RFC 430.

In general, Rust tends to use UpperCamelCase for "type-level" constructs (types and
traits) and snake_case for "value-level" constructs. More precisely:

	Item	Convention

	Crates	unclear

	Modules	snake_case

	Types	UpperCamelCase

	Traits	UpperCamelCase

	Enum variants	UpperCamelCase

	Functions	snake_case

	Methods	snake_case

	General constructors	new or with_more_details

	Conversion constructors	from_some_other_type

	Macros	snake_case!

	Local variables	snake_case

	Statics	SCREAMING_SNAKE_CASE

	Constants	SCREAMING_SNAKE_CASE

	Type parameters	concise UpperCamelCase, usually single uppercase letter: T

	Lifetimes	short lowercase, usually a single letter: 'a, 'de, 'src

	Features	unclear but see C-FEATURE

In UpperCamelCase, acronyms and contractions of compound words count as one word: use Uuid rather than UUID, Usize rather than USize or Stdin rather than StdIn. In snake_case, acronyms and contractions are lower-cased: is_xid_start.

In snake_case or SCREAMING_SNAKE_CASE, a "word" should never consist of a
single letter unless it is the last "word". So, we have btree_map rather than
b_tree_map, but PI_2 rather than PI2.

Crate names should not use -rs or -rust as a suffix or prefix. Every crate
is Rust! It serves no purpose to remind users of this constantly.

Examples from the standard library

The whole standard library. This guideline should be easy!

Ad-hoc conversions follow as_, to_, into_ conventions (C-CONV)

Conversions should be provided as methods, with names prefixed as follows:

	Prefix	Cost	Ownership

	as_	Free	borrowed -> borrowed

	to_	Expensive	borrowed -> borrowedborrowed -> owned (non-Copy types)owned -> owned (Copy types)

 Interoperability

 Interoperability

Types eagerly implement common traits (C-COMMON-TRAITS)

Rust's trait system does not allow orphans: roughly, every impl must live
either in the crate that defines the trait or the implementing type.
Consequently, crates that define new types should eagerly implement all
applicable, common traits.

To see why, consider the following situation:

	Crate std defines trait Display.

	Crate url defines type Url, without implementing Display.

	Crate webapp imports from both std and url,

There is no way for webapp to add Display to Url, since it defines
neither. (Note: the newtype pattern can provide an efficient, but inconvenient
workaround.)

The most important common traits to implement from std are:

	Copy

	Clone

	Eq

	PartialEq

	Ord

	PartialOrd

	Hash

	Debug

	Display

	Default

Note that it is common and expected for types to implement both
Default and an empty new constructor. new is the constructor
convention in Rust, and users expect it to exist, so if it is
reasonable for the basic constructor to take no arguments, then it
should, even if it is functionally identical to default.

Conversions use the standard traits From, AsRef, AsMut (C-CONV-TRAITS)

The following conversion traits should be implemented where it makes sense:

	From

	TryFrom

	AsRef

	AsMut

The following conversion traits should never be implemented:

	Into

	TryInto

These traits have a blanket impl based on From and TryFrom. Implement those
instead.

Examples from the standard library

	From<u16> is implemented for u32 because a smaller integer can always be
converted to a bigger integer.

	From<u32> is not implemented for u16 because the conversion may not be
possible if the integer is too big.

	TryFrom<u32> is implemented for u16 and returns an error if the integer is
too big to fit in u16.

	From<Ipv6Addr> is implemented for IpAddr, which is a type that can
represent both v4 and v6 IP addresses.

Collections implement FromIterator and Extend (C-COLLECT)

FromIterator and Extend enable collections to be used conveniently with
the following iterator methods:

	Iterator::collect

	Iterator::partition

	Iterator::unzip

FromIterator is for creating a new collection containing items from an
iterator, and Extend is for adding items from an iterator onto an existing
collection.

Examples from the standard library

	Vec<T> implements both FromIterator<T> and Extend<T>.

Data structures implement Serde's Serialize, Deserialize (C-SERDE)

Types that play the role of a data structure should implement Serialize and
Deserialize.

There is a continuum of types between things that are clearly a data structure
and things that are clearly not, with gray area in between. LinkedHashMap
and IpAddr are data structures. It would be completely reasonable for
somebody to want to read in a LinkedHashMap or IpAddr from a JSON file, or
send one over IPC to another process. LittleEndian is not a data structure.
It is a marker used by the byteorder crate to optimize at compile time for
bytes in a particular order, and in fact an instance of LittleEndian can never
exist at runtime. So these are clear-cut examples; the #rust or #serde IRC
channels can help assess more ambiguous cases if necessary.

If a crate does not already depend on Serde for other reasons, it may wish to
gate Serde impls behind a Cargo cfg. This way downstream libraries only need to
pay the cost of compiling Serde if they need those impls to exist.

For consistency with other Serde-based libraries, the name of the Cargo cfg
should be simply "serde". Do not use a different name for the cfg like
"serde_impls" or "serde_serialization".

The canonical implementation looks like this when not using derive:

[dependencies]
serde = { version = "1.0", optional = true }

pub struct T { /* ... */ }

#[cfg(feature = "serde")]
impl Serialize for T { /* ... */ }

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for T { /* ... */ }

And when using derive:

[dependencies]
serde = { version = "1.0", optional = true, features = ["derive"] }

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct T { /* ... */ }

Types are Send and Sync where possible (C-SEND-SYNC)

Send and Sync are automatically implemented when the compiler determines
it is appropriate.

In types that manipulate raw pointers, be vigilant that the Send and Sync
status of your type accurately reflects its thread safety characteristics. Tests
like the following can help catch unintentional regressions in whether the type
implements Send or Sync.

#[test]
fn test_send() {
 fn assert_send<T: Send>() {}
 assert_send::<MyStrangeType>();
}

#[test]
fn test_sync() {
 fn assert_sync<T: Sync>() {}
 assert_sync::<MyStrangeType>();
}

Error types are meaningful and well-behaved (C-GOOD-ERR)

An error type is any type E used in a Result<T, E> returned by any public
function of your crate. Error types should always implement the
std::error::Error trait which is the mechanism by which error handling
libraries like error-chain abstract over different types of errors, and
which allows the error to be used as the source() of another error.

Additionally, error types should implement the Send and Sync traits. An
error that is not Send cannot be returned by a thread run with
thread::spawn. An error that is not Sync cannot be passed across threads
using an Arc. These are common requirements for basic error handling in a
multithreaded application.

Send and Sync are also important for being able to package a custom error
into an IO error using std::io::Error::new, which requires a trait bound of
Error + Send + Sync.

One place to be vigilant about this guideline is in functions that return Error
trait objects, for example reqwest::Error::get_ref. Typically Error + Send + Sync + 'static will be the most useful for callers. The addition of
'static allows the trait object to be used with Error::downcast_ref.

Never use () as an error type, even where there is no useful additional
information for the error to carry.

	() does not implement Error so it cannot be used with error handling
libraries like error-chain.

	() does not implement Display so a user would need to write an error
message of their own if they want to fail because of the error.

	() has an unhelpful Debug representation for users that decide to
unwrap() the error.

	It would not be semantically meaningful for a downstream library to implement
From<()> for their error type, so () as an error type cannot be used with
the ? operator.

Instead, define a meaningful error type specific to your crate or to the
individual function. Provide appropriate Error and Display impls. If there
is no useful information for the error to carry, it can be implemented as a unit
struct.

use std::error::Error;
use std::fmt::Display;

// Instead of this...
fn do_the_thing() -> Result<Wow, ()>

// Prefer this...
fn do_the_thing() -> Result<Wow, DoError>

#[derive(Debug)]
struct DoError;

impl Display for DoError { /* ... */ }
impl Error for DoError { /* ... */ }

The error message given by the Display representation of an error type should
be lowercase without trailing punctuation, and typically concise.

Error::description() should not be implemented. It has been deprecated and users should
always use Display instead of description() to print the error.

Examples from the standard library

	ParseBoolError is returned when failing to parse a bool from a string.

Examples of error messages

	"unexpected end of file"

	"provided string was not `true` or `false`"

	"invalid IP address syntax"

	"second time provided was later than self"

	"invalid UTF-8 sequence of {} bytes from index {}"

	"environment variable was not valid unicode: {:?}"

Binary number types provide Hex, Octal, Binary formatting (C-NUM-FMT)

	std::fmt::UpperHex

	std::fmt::LowerHex

	std::fmt::Octal

	std::fmt::Binary

These traits control the representation of a type under the {:X}, {:x},
{:o}, and {:b} format specifiers.

Implement these traits for any number type on which you would consider doing
bitwise manipulations like | or &. This is especially appropriate for
bitflag types. Numeric quantity types like struct Nanoseconds(u64) probably do
not need these.

Generic reader/writer functions take R: Read and W: Write by value (C-RW-VALUE)

The standard library contains these two impls:

impl<'a, R: Read + ?Sized> Read for &'a mut R { /* ... */ }

impl<'a, W: Write + ?Sized> Write for &'a mut W { /* ... */ }

That means any function that accepts R: Read or W: Write generic parameters
by value can be called with a mut reference if necessary.

In the documentation of such functions, briefly remind users that a mut
reference can be passed. New Rust users often struggle with this. They may have
opened a file and want to read multiple pieces of data out of it, but the
function to read one piece consumes the reader by value, so they are stuck. The
solution would be to leverage one of the above impls and pass &mut f instead
of f as the reader parameter.

Examples

	flate2::read::GzDecoder::new

	flate2::write::GzEncoder::new

	serde_json::from_reader

	serde_json::to_writer

 Macros

 Macros

Input syntax is evocative of the output (C-EVOCATIVE)

Rust macros let you dream up practically whatever input syntax you want. Aim to
keep input syntax familiar and cohesive with the rest of your users' code by
mirroring existing Rust syntax where possible. Pay attention to the choice and
placement of keywords and punctuation.

A good guide is to use syntax, especially keywords and punctuation, that is
similar to what will be produced in the output of the macro.

For example if your macro declares a struct with a particular name given in the
input, preface the name with the keyword struct to signal to readers that a
struct is being declared with the given name.

// Prefer this...
bitflags! {
 struct S: u32 { /* ... */ }
}

// ...over no keyword...
bitflags! {
 S: u32 { /* ... */ }
}

// ...or some ad-hoc word.
bitflags! {
 flags S: u32 { /* ... */ }
}

Another example is semicolons vs commas. Constants in Rust are followed by
semicolons so if your macro declares a chain of constants, they should likely be
followed by semicolons even if the syntax is otherwise slightly different from
Rust's.

// Ordinary constants use semicolons.
const A: u32 = 0b000001;
const B: u32 = 0b000010;

// So prefer this...
bitflags! {
 struct S: u32 {
 const C = 0b000100;
 const D = 0b001000;
 }
}

// ...over this.
bitflags! {
 struct S: u32 {
 const E = 0b010000,
 const F = 0b100000,
 }
}

Macros are so diverse that these specific examples won't be relevant, but think
about how to apply the same principles to your situation.

Item macros compose well with attributes (C-MACRO-ATTR)

Macros that produce more than one output item should support adding attributes
to any one of those items. One common use case would be putting individual items
behind a cfg.

bitflags! {
 struct Flags: u8 {
 #[cfg(windows)]
 const ControlCenter = 0b001;
 #[cfg(unix)]
 const Terminal = 0b010;
 }
}

Macros that produce a struct or enum as output should support attributes so that
the output can be used with derive.

bitflags! {
 #[derive(Default, Serialize)]
 struct Flags: u8 {
 const ControlCenter = 0b001;
 const Terminal = 0b010;
 }
}

Item macros work anywhere that items are allowed (C-ANYWHERE)

Rust allows items to be placed at the module level or within a tighter scope
like a function. Item macros should work equally well as ordinary items in all
of these places. The test suite should include invocations of the macro in at
least the module scope and function scope.

#[cfg(test)]
mod tests {
 test_your_macro_in_a!(module);

 #[test]
 fn anywhere() {
 test_your_macro_in_a!(function);
 }
}

As a simple example of how things can go wrong, this macro works great in a
module scope but fails in a function scope.

macro_rules! broken {
 ($m:ident :: $t:ident) => {
 pub struct $t;
 pub mod $m {
 pub use super::$t;
 }
 }
}

broken!(m::T); // okay, expands to T and m::T

fn g() {
 broken!(m::U); // fails to compile, super::U refers to the containing module not g
}

Item macros support visibility specifiers (C-MACRO-VIS)

Follow Rust syntax for visibility of items produced by a macro. Private by
default, public if pub is specified.

bitflags! {
 struct PrivateFlags: u8 {
 const A = 0b0001;
 const B = 0b0010;
 }
}

bitflags! {
 pub struct PublicFlags: u8 {
 const C = 0b0100;
 const D = 0b1000;
 }
}

Type fragments are flexible (C-MACRO-TY)

If your macro accepts a type fragment like $t:ty in the input, it should be
usable with all of the following:

	Primitives: u8, &str

	Relative paths: m::Data

	Absolute paths: ::base::Data

	Upward relative paths: super::Data

	Generics: Vec<String>

As a simple example of how things can go wrong, this macro works great with
primitives and absolute paths but fails with relative paths.

macro_rules! broken {
 ($m:ident => $t:ty) => {
 pub mod $m {
 pub struct Wrapper($t);
 }
 }
}

broken!(a => u8); // okay

broken!(b => ::std::marker::PhantomData<()>); // okay

struct S;
broken!(c => S); // fails to compile

 Documentation

 Documentation

Crate level docs are thorough and include examples (C-CRATE-DOC)

See RFC 1687.

All items have a rustdoc example (C-EXAMPLE)

Every public module, trait, struct, enum, function, method, macro, and type
definition should have an example that exercises the functionality.

This guideline should be applied within reason.

A link to an applicable example on another item may be sufficient. For example
if exactly one function uses a particular type, it may be appropriate to write a
single example on either the function or the type and link to it from the other.

The purpose of an example is not always to show how to use the item. Readers
can be expected to understand how to invoke functions, match on enums, and other
fundamental tasks. Rather, an example is often intended to show why someone
would want to use the item.

// This would be a poor example of using clone(). It mechanically shows *how* to
// call clone(), but does nothing to show *why* somebody would want this.
fn main() {
 let hello = "hello";

 hello.clone();
}

Examples use ?, not try!, not unwrap (C-QUESTION-MARK)

Like it or not, example code is often copied verbatim by users. Unwrapping an
error should be a conscious decision that the user needs to make.

A common way of structuring fallible example code is the following. The lines
beginning with # are compiled by cargo test when building the example but
will not appear in user-visible rustdoc.

/// ```rust
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// your;
/// example?;
/// code;
/// #
/// # Ok(())
/// # }
/// ```

Function docs include error, panic, and safety considerations (C-FAILURE)

Error conditions should be documented in an "Errors" section. This applies to
trait methods as well -- trait methods for which the implementation is allowed
or expected to return an error should be documented with an "Errors" section.

For example in the standard library, Some implementations of the
std::io::Read::read trait method may return an error.

/// Pull some bytes from this source into the specified buffer, returning
/// how many bytes were read.
///
/// ... lots more info ...
///
/// # Errors
///
/// If this function encounters any form of I/O or other error, an error
/// variant will be returned. If an error is returned then it must be
/// guaranteed that no bytes were read.

Panic conditions should be documented in a "Panics" section. This applies to
trait methods as well -- traits methods for which the implementation is allowed
or expected to panic should be documented with a "Panics" section.

In the standard library the Vec::insert method may panic.

/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// # Panics
///
/// Panics if `index` is out of bounds.

It is not necessary to document all conceivable panic cases, especially if the
panic occurs in logic provided by the caller. For example documenting the
Display panic in the following code seems excessive. But when in doubt, err on
the side of documenting more panic cases.

/// # Panics
///
/// This function panics if `T`'s implementation of `Display` panics.
pub fn print<T: Display>(t: T) {
 println!("{}", t.to_string());
}

Unsafe functions should be documented with a "Safety" section that explains all
invariants that the caller is responsible for upholding to use the function
correctly.

The unsafe std::ptr::read requires the following of the caller.

/// Reads the value from `src` without moving it. This leaves the
/// memory in `src` unchanged.
///
/// # Safety
///
/// Beyond accepting a raw pointer, this is unsafe because it semantically
/// moves the value out of `src` without preventing further usage of `src`.
/// If `T` is not `Copy`, then care must be taken to ensure that the value at
/// `src` is not used before the data is overwritten again (e.g. with `write`,
/// `zero_memory`, or `copy_memory`). Note that `*src = foo` counts as a use
/// because it will attempt to drop the value previously at `*src`.
///
/// The pointer must be aligned; use `read_unaligned` if that is not the case.

Prose contains hyperlinks to relevant things (C-LINK)

Regular links can be added inline with the usual markdown syntax of
[text](url). Links to other types can be added by marking them with
[`text`], then adding the link target in a new line at the end of
the docstring with [`text`]: <target>, where <target> is
described below.

Link targets to methods within the same type usually look like this:

[`serialize_struct`]: #method.serialize_struct

Link targets to other types usually look like this:

[`Deserialize`]: trait.Deserialize.html

Link targets may also point to a parent or child module:

[`Value`]: ../enum.Value.html
[`DeserializeOwned`]: de/trait.DeserializeOwned.html

This guideline is officially recommended by RFC 1574 under the heading "Link
all the things".

Cargo.toml includes all common metadata (C-METADATA)

The [package] section of Cargo.toml should include the following
values:

	authors

	description

	license

	repository

	keywords

	categories

In addition, there are two optional metadata fields:

	documentation

	homepage

By default, crates.io links to documentation for the crate on docs.rs. The
documentation metadata only needs to be set if the documentation is hosted
somewhere other than docs.rs, for example because the crate links against a
shared library that is not available in the build environment of docs.rs.

The homepage metadata should only be set if there is a unique website for the
crate other than the source repository or API documentation. Do not make
homepage redundant with either the documentation or repository values. For
example, serde sets homepage to https://serde.rs, a dedicated website.

Release notes document all significant changes (C-RELNOTES)

Users of the crate can read the release notes to find a summary of what
changed in each published release of the crate. A link to the release notes,
or the notes themselves, should be included in the crate-level documentation
and/or the repository linked in Cargo.toml.

Breaking changes (as defined in RFC 1105) should be clearly identified in the
release notes.

If using Git to track the source of a crate, every release published to
crates.io should have a corresponding tag identifying the commit that was
published. A similar process should be used for non-Git VCS tools as well.

Tag the current commit
GIT_COMMITTER_DATE=$(git log -n1 --pretty=%aD) git tag -a -m "Release 0.3.0" 0.3.0
git push --tags

Annotated tags are preferred because some Git commands ignore unannotated tags
if any annotated tags exist.

Examples

	Serde 1.0.0 release notes

	Serde 0.9.8 release notes

	Serde 0.9.0 release notes

	Diesel change log

Rustdoc does not show unhelpful implementation details (C-HIDDEN)

Rustdoc is supposed to include everything users need to use the crate fully and
nothing more. It is fine to explain relevant implementation details in prose but
they should not be real entries in the documentation.

Especially be selective about which impls are visible in rustdoc -- all the ones
that users would need for using the crate fully, but no others. In the following
code the rustdoc of PublicError by default would show the From<PrivateError>
impl. We choose to hide it with #[doc(hidden)] because users can never have a
PrivateError in their code so this impl would never be relevant to them.

// This error type is returned to users.
pub struct PublicError { /* ... */ }

// This error type is returned by some private helper functions.
struct PrivateError { /* ... */ }

// Enable use of `?` operator.
#[doc(hidden)]
impl From<PrivateError> for PublicError {
 fn from(err: PrivateError) -> PublicError {
 /* ... */
 }
}

pub(crate) is another great tool for removing implementation details from
the public API. It allows items to be used from outside of their own module but
not outside of the same crate.

 Predictability

 Predictability

Smart pointers do not add inherent methods (C-SMART-PTR)

For example, this is why the Box::into_raw function is defined the way it
is.

impl<T> Box<T> where T: ?Sized {
 fn into_raw(b: Box<T>) -> *mut T { /* ... */ }
}

let boxed_str: Box<str> = /* ... */;
let ptr = Box::into_raw(boxed_str);

If this were defined as an inherent method instead, it would be confusing at the
call site whether the method being called is a method on Box<T> or a method on
T.

impl<T> Box<T> where T: ?Sized {
 // Do not do this.
 fn into_raw(self) -> *mut T { /* ... */ }
}

let boxed_str: Box<str> = /* ... */;

// This is a method on str accessed through the smart pointer Deref impl.
boxed_str.chars()

// This is a method on Box<str>...?
boxed_str.into_raw()

Conversions live on the most specific type involved (C-CONV-SPECIFIC)

When in doubt, prefer to_/as_/into_ to from_, because they are more
ergonomic to use (and can be chained with other methods).

For many conversions between two types, one of the types is clearly more
"specific": it provides some additional invariant or interpretation that is not
present in the other type. For example, str is more specific than &[u8],
since it is a UTF-8 encoded sequence of bytes.

Conversions should live with the more specific of the involved types. Thus,
str provides both the as_bytes method and the from_utf8 constructor
for converting to and from &[u8] values. Besides being intuitive, this
convention avoids polluting concrete types like &[u8] with endless conversion
methods.

Functions with a clear receiver are methods (C-METHOD)

Prefer

impl Foo {
 pub fn frob(&self, w: widget) { /* ... */ }
}

over

pub fn frob(foo: &Foo, w: widget) { /* ... */ }

for any operation that is clearly associated with a particular type.

Methods have numerous advantages over functions:

	They do not need to be imported or qualified to be used: all you need is a
value of the appropriate type.

	Their invocation performs autoborrowing (including mutable borrows).

	They make it easy to answer the question "what can I do with a value of type
T" (especially when using rustdoc).

	They provide self notation, which is more concise and often more clearly
conveys ownership distinctions.

Functions do not take out-parameters (C-NO-OUT)

Prefer

fn foo() -> (Bar, Bar)

over

fn foo(output: &mut Bar) -> Bar

for returning multiple Bar values.

Compound return types like tuples and structs are efficiently compiled and do
not require heap allocation. If a function needs to return multiple values, it
should do so via one of these types.

The primary exception: sometimes a function is meant to modify data that the
caller already owns, for example to re-use a buffer:

fn read(&mut self, buf: &mut [u8]) -> io::Result<usize>

Operator overloads are unsurprising (C-OVERLOAD)

Operators with built in syntax (*, |, and so on) can be provided for a type
by implementing the traits in std::ops. These operators come with strong
expectations: implement Mul only for an operation that bears some resemblance
to multiplication (and shares the expected properties, e.g. associativity), and
so on for the other traits.

Only smart pointers implement Deref and DerefMut (C-DEREF)

The Deref traits are used implicitly by the compiler in many circumstances,
and interact with method resolution. The relevant rules are designed
specifically to accommodate smart pointers, and so the traits should be used
only for that purpose.

Examples from the standard library

	Box<T>

	String is a smart
pointer to str

	Rc<T>

	Arc<T>

	Cow<'a, T>

Constructors are static, inherent methods (C-CTOR)

In Rust, "constructors" are just a convention. There are a variety of
conventions around constructor naming, and the distinctions are often
subtle.

A constructor in its most basic form is a new method with no arguments.

impl<T> Example<T> {
 pub fn new() -> Example<T> { /* ... */ }
}

Constructors are static (no self) inherent methods for the type that they
construct. Combined with the practice of fully importing type names, this
convention leads to informative but concise construction:

use example::Example;

// Construct a new Example.
let ex = Example::new();

The name new should generally be used for the primary method of instantiating
a type. Sometimes it takes no arguments, as in the examples above. Sometimes it
does take arguments, like Box::new which is passed the value to place in the
Box.

Some types' constructors, most notably I/O resource types, use distinct naming
conventions for their constructors, as in File::open, Mmap::open,
TcpStream::connect, and UdpSocket::bind. In these cases names are chosen
as appropriate for the domain.

Often there are multiple ways to construct a type. It's common in these cases
for secondary constructors to be suffixed _with_foo, as in
Mmap::open_with_offset. If your type has a multiplicity of construction
options though, consider the builder pattern (C-BUILDER) instead.

Some constructors are "conversion constructors", methods that create a new type
from an existing value of a different type. These typically have names beginning
with from_ as in std::io::Error::from_raw_os_error. Note also though the
From trait (C-CONV-TRAITS), which is quite similar. There are three
distinctions between a from_-prefixed conversion constructor and a From<T>
impl.

	A from_ constructor can be unsafe; a From impl cannot. One example of this
is Box::from_raw.

	A from_ constructor can accept additional arguments to disambiguate the
meaning of the source data, as in u64::from_str_radix.

	A From impl is only appropriate when the source data type is sufficient to
determine the encoding of the output data type. When the input is just a bag
of bits like in u64::from_be or String::from_utf8, the conversion
constructor name is able to identify their meaning.

Note that it is common and expected for types to implement both Default and a
new constructor. For types that have both, they should have the same behavior.
Either one may be implemented in terms of the other.

Examples from the standard library

	std::io::Error::new is the commonly used constructor for an IO error.

	std::io::Error::from_raw_os_error is a conversion constructor
based on an error code received from the operating system.

	Box::new creates a new container type, taking a single argument.

	File::open opens a file resource.

	Mmap::open_with_offset opens a memory-mapped file, with additional options.

 Flexibility

 Flexibility

Functions expose intermediate results to avoid duplicate work (C-INTERMEDIATE)

Many functions that answer a question also compute interesting related data. If
this data is potentially of interest to the client, consider exposing it in the
API.

Examples from the standard library

	
Vec::binary_search does not return a bool of whether the value was
found, nor an Option<usize> of the index at which the value was maybe found.
Instead it returns information about the index if found, and also the index at
which the value would need to be inserted if not found.

	
String::from_utf8 may fail if the input bytes are not UTF-8. In the error
case it returns an intermediate result that exposes the byte offset up to
which the input was valid UTF-8, as well as handing back ownership of the
input bytes.

	
HashMap::insert returns an Option<T> that returns the preexisting value
for a given key, if any. For cases where the user wants to recover this value
having it returned by the insert operation avoids the user having to do a second
hash table lookup.

Caller decides where to copy and place data (C-CALLER-CONTROL)

If a function requires ownership of an argument, it should take ownership of the
argument rather than borrowing and cloning the argument.

// Prefer this:
fn foo(b: Bar) {
 /* use b as owned, directly */
}

// Over this:
fn foo(b: &Bar) {
 let b = b.clone();
 /* use b as owned after cloning */
}

If a function does not require ownership of an argument, it should take a
shared or exclusive borrow of the argument rather than taking ownership and
dropping the argument.

// Prefer this:
fn foo(b: &Bar) {
 /* use b as borrowed */
}

// Over this:
fn foo(b: Bar) {
 /* use b as borrowed, it is implicitly dropped before function returns */
}

The Copy trait should only be used as a bound when absolutely needed, not as a
way of signaling that copies should be cheap to make.

Functions minimize assumptions about parameters by using generics (C-GENERIC)

The fewer assumptions a function makes about its inputs, the more widely usable
it becomes.

Prefer

fn foo<I: IntoIterator<Item = i64>>(iter: I) { /* ... */ }

over any of

fn foo(c: &[i64]) { /* ... */ }
fn foo(c: &Vec<i64>) { /* ... */ }
fn foo(c: &SomeOtherCollection<i64>) { /* ... */ }

if the function only needs to iterate over the data.

More generally, consider using generics to pinpoint the assumptions a function
needs to make about its arguments.

Advantages of generics

	
Reusability. Generic functions can be applied to an open-ended collection of
types, while giving a clear contract for the functionality those types must
provide.

	
Static dispatch and optimization. Each use of a generic function is
specialized ("monomorphized") to the particular types implementing the trait
bounds, which means that (1) invocations of trait methods are static, direct
calls to the implementation and (2) the compiler can inline and otherwise
optimize these calls.

	
Inline layout. If a struct and enum type is generic over some type
parameter T, values of type T will be laid out inline in the
struct/enum, without any indirection.

	
Inference. Since the type parameters to generic functions can usually be
inferred, generic functions can help cut down on verbosity in code where
explicit conversions or other method calls would usually be necessary.

	
Precise types. Because generics give a name to the specific type
implementing a trait, it is possible to be precise about places where that
exact type is required or produced. For example, a function

fn binary<T: Trait>(x: T, y: T) -> T

is guaranteed to consume and produce elements of exactly the same type T; it
cannot be invoked with parameters of different types that both implement
Trait.

Disadvantages of generics

	
Code size. Specializing generic functions means that the function body is
duplicated. The increase in code size must be weighed against the performance
benefits of static dispatch.

	
Homogeneous types. This is the other side of the "precise types" coin: if
T is a type parameter, it stands for a single actual type. So for example
a Vec<T> contains elements of a single concrete type (and, indeed, the
vector representation is specialized to lay these out in line). Sometimes
heterogeneous collections are useful; see trait objects.

	
Signature verbosity. Heavy use of generics can make it more difficult to
read and understand a function's signature.

Examples from the standard library

	std::fs::File::open takes an argument of generic type AsRef<Path>. This
allows files to be opened conveniently from a string literal "f.txt", a
Path, an OsString, and a few other types.

Traits are object-safe if they may be useful as a trait object (C-OBJECT)

Trait objects have some significant limitations: methods invoked through a trait
object cannot use generics, and cannot use Self except in receiver position.

When designing a trait, decide early on whether the trait will be used as an
object or as a bound on generics.

If a trait is meant to be used as an object, its methods should take and return
trait objects rather than use generics.

A where clause of Self: Sized may be used to exclude specific methods from
the trait's object. The following trait is not object-safe due to the generic
method.

trait MyTrait {
 fn object_safe(&self, i: i32);

 fn not_object_safe<T>(&self, t: T);
}

Adding a requirement of Self: Sized to the generic method excludes it from the
trait object and makes the trait object-safe.

trait MyTrait {
 fn object_safe(&self, i: i32);

 fn not_object_safe<T>(&self, t: T) where Self: Sized;
}

Advantages of trait objects

	Heterogeneity. When you need it, you really need it.

	Code size. Unlike generics, trait objects do not generate specialized
(monomorphized) versions of code, which can greatly reduce code size.

Disadvantages of trait objects

	No generic methods. Trait objects cannot currently provide generic methods.

	Dynamic dispatch and fat pointers. Trait objects inherently involve
indirection and vtable dispatch, which can carry a performance penalty.

	No Self. Except for the method receiver argument, methods on trait objects
cannot use the Self type.

Examples from the standard library

	The io::Read and io::Write traits are often used as objects.

	The Iterator trait has several generic methods marked with where Self: Sized to retain the ability to use Iterator as an object.

 Type safety

 Type safety

Newtypes provide static distinctions (C-NEWTYPE)

Newtypes can statically distinguish between different interpretations of an
underlying type.

For example, a f64 value might be used to represent a quantity in miles or in
kilometers. Using newtypes, we can keep track of the intended interpretation:

struct Miles(pub f64);
struct Kilometers(pub f64);

impl Miles {
 fn to_kilometers(self) -> Kilometers { /* ... */ }
}
impl Kilometers {
 fn to_miles(self) -> Miles { /* ... */ }
}

Once we have separated these two types, we can statically ensure that we do not
confuse them. For example, the function

fn are_we_there_yet(distance_travelled: Miles) -> bool { /* ... */ }

cannot accidentally be called with a Kilometers value. The compiler will
remind us to perform the conversion, thus averting certain catastrophic bugs.

Arguments convey meaning through types, not bool or Option (C-CUSTOM-TYPE)

Prefer

let w = Widget::new(Small, Round)

over

let w = Widget::new(true, false)

Core types like bool, u8 and Option have many possible interpretations.

Use a deliberate type (whether enum, struct, or tuple) to convey interpretation
and invariants. In the above example, it is not immediately clear what true
and false are conveying without looking up the argument names, but Small and
Round are more suggestive.

Using custom types makes it easier to expand the options later on, for example
by adding an ExtraLarge variant.

See the newtype pattern (C-NEWTYPE) for a no-cost way to wrap existing types
with a distinguished name.

Types for a set of flags are bitflags, not enums (C-BITFLAG)

Rust supports enum types with explicitly specified discriminants:

enum Color {
 Red = 0xff0000,
 Green = 0x00ff00,
 Blue = 0x0000ff,
}

Custom discriminants are useful when an enum type needs to be serialized to an
integer value compatibly with some other system/language. They support
"typesafe" APIs: by taking a Color, rather than an integer, a function is
guaranteed to get well-formed inputs, even if it later views those inputs as
integers.

An enum allows an API to request exactly one choice from among many. Sometimes
an API's input is instead the presence or absence of a set of flags. In C code,
this is often done by having each flag correspond to a particular bit, allowing
a single integer to represent, say, 32 or 64 flags. Rust's bitflags crate
provides a typesafe representation of this pattern.

use bitflags::bitflags;

bitflags! {
 struct Flags: u32 {
 const FLAG_A = 0b00000001;
 const FLAG_B = 0b00000010;
 const FLAG_C = 0b00000100;
 }
}

fn f(settings: Flags) {
 if settings.contains(Flags::FLAG_A) {
 println!("doing thing A");
 }
 if settings.contains(Flags::FLAG_B) {
 println!("doing thing B");
 }
 if settings.contains(Flags::FLAG_C) {
 println!("doing thing C");
 }
}

fn main() {
 f(Flags::FLAG_A | Flags::FLAG_C);
}

Builders enable construction of complex values (C-BUILDER)

Some data structures are complicated to construct, due to their construction
needing:

	a large number of inputs

	compound data (e.g. slices)

	optional configuration data

	choice between several flavors

which can easily lead to a large number of distinct constructors with many
arguments each.

If T is such a data structure, consider introducing a T builder:

	Introduce a separate data type TBuilder for incrementally configuring a T
value. When possible, choose a better name: e.g. Command is the builder
for a child process, Url can be created from a ParseOptions.

	The builder constructor should take as parameters only the data required to
make a T.

	The builder should offer a suite of convenient methods for configuration,
including setting up compound inputs (like slices) incrementally. These
methods should return self to allow chaining.

	The builder should provide one or more "terminal" methods for actually
building a T.

The builder pattern is especially appropriate when building a T involves side
effects, such as spawning a task or launching a process.

In Rust, there are two variants of the builder pattern, differing in the
treatment of ownership, as described below.

Non-consuming builders (preferred)

In some cases, constructing the final T does not require the builder itself to
be consumed. The following variant on std::process::Command is one example:

// NOTE: the actual Command API does not use owned Strings;
// this is a simplified version.

pub struct Command {
 program: String,
 args: Vec<String>,
 cwd: Option<String>,
 // etc
}

impl Command {
 pub fn new(program: String) -> Command {
 Command {
 program: program,
 args: Vec::new(),
 cwd: None,
 }
 }

 /// Add an argument to pass to the program.
 pub fn arg(&mut self, arg: String) -> &mut Command {
 self.args.push(arg);
 self
 }

 /// Add multiple arguments to pass to the program.
 pub fn args(&mut self, args: &[String]) -> &mut Command {
 self.args.extend_from_slice(args);
 self
 }

 /// Set the working directory for the child process.
 pub fn current_dir(&mut self, dir: String) -> &mut Command {
 self.cwd = Some(dir);
 self
 }

 /// Executes the command as a child process, which is returned.
 pub fn spawn(&self) -> io::Result<Child> {
 /* ... */
 }
}

Note that the spawn method, which actually uses the builder configuration to
spawn a process, takes the builder by shared reference. This is possible because
spawning the process does not require ownership of the configuration data.

Because the terminal spawn method only needs a reference, the configuration
methods take and return a mutable borrow of self.

The benefit

By using borrows throughout, Command can be used conveniently for both
one-liner and more complex constructions:

// One-liners
Command::new("/bin/cat").arg("file.txt").spawn();

// Complex configuration
let mut cmd = Command::new("/bin/ls");
if size_sorted {
 cmd.arg("-S");
}
cmd.arg(".");
cmd.spawn();

Consuming builders

Sometimes builders must transfer ownership when constructing the final type T,
meaning that the terminal methods must take self rather than &self.

impl TaskBuilder {
 /// Name the task-to-be.
 pub fn named(mut self, name: String) -> TaskBuilder {
 self.name = Some(name);
 self
 }

 /// Redirect task-local stdout.
 pub fn stdout(mut self, stdout: Box<io::Write + Send>) -> TaskBuilder {
 self.stdout = Some(stdout);
 self
 }

 /// Creates and executes a new child task.
 pub fn spawn<F>(self, f: F) where F: FnOnce() + Send {
 /* ... */
 }
}

Here, the stdout configuration involves passing ownership of an io::Write,
which must be transferred to the task upon construction (in spawn).

When the terminal methods of the builder require ownership, there is a basic
tradeoff:

	
If the other builder methods take/return a mutable borrow, the complex
configuration case will work well, but one-liner configuration becomes
impossible.

	
If the other builder methods take/return an owned self, one-liners continue
to work well but complex configuration is less convenient.

Under the rubric of making easy things easy and hard things possible, all
builder methods for a consuming builder should take and return an owned
self. Then client code works as follows:

// One-liners
TaskBuilder::new("my_task").spawn(|| { /* ... */ });

// Complex configuration
let mut task = TaskBuilder::new();
task = task.named("my_task_2"); // must re-assign to retain ownership
if reroute {
 task = task.stdout(mywriter);
}
task.spawn(|| { /* ... */ });

One-liners work as before, because ownership is threaded through each of the
builder methods until being consumed by spawn. Complex configuration, however,
is more verbose: it requires re-assigning the builder at each step.

 Dependability

 Dependability

Functions validate their arguments (C-VALIDATE)

Rust APIs do not generally follow the robustness principle: "be conservative
in what you send; be liberal in what you accept".

Instead, Rust code should enforce the validity of input whenever practical.

Enforcement can be achieved through the following mechanisms (listed in order of
preference).

Static enforcement

Choose an argument type that rules out bad inputs.

For example, prefer

fn foo(a: Ascii) { /* ... */ }

over

fn foo(a: u8) { /* ... */ }

where Ascii is a wrapper around u8 that guarantees the highest bit is
zero; see newtype patterns (C-NEWTYPE) for more details on creating typesafe
wrappers.

Static enforcement usually comes at little run-time cost: it pushes the costs to
the boundaries (e.g. when a u8 is first converted into an Ascii). It also
catches bugs early, during compilation, rather than through run-time failures.

On the other hand, some properties are difficult or impossible to express using
types.

Dynamic enforcement

Validate the input as it is processed (or ahead of time, if necessary). Dynamic
checking is often easier to implement than static checking, but has several
downsides:

	Runtime overhead (unless checking can be done as part of processing the
input).

	Delayed detection of bugs.

	Introduces failure cases, either via panic! or Result/Option types,
which must then be dealt with by client code.

Dynamic enforcement with debug_assert!

Same as dynamic enforcement, but with the possibility of easily turning off
expensive checks for production builds.

Dynamic enforcement with opt-out

Same as dynamic enforcement, but adds sibling functions that opt out of the
checking.

The convention is to mark these opt-out functions with a suffix like
_unchecked or by placing them in a raw submodule.

The unchecked functions can be used judiciously in cases where (1) performance
dictates avoiding checks and (2) the client is otherwise confident that the
inputs are valid.

Destructors never fail (C-DTOR-FAIL)

Destructors are executed while panicking, and in that context a failing
destructor causes the program to abort.

Instead of failing in a destructor, provide a separate method for checking for
clean teardown, e.g. a close method, that returns a Result to signal
problems. If that close method is not called, the Drop implementation
should do the teardown and ignore or log/trace any errors it produces.

Destructors that may block have alternatives (C-DTOR-BLOCK)

Similarly, destructors should not invoke blocking operations, which can make
debugging much more difficult. Again, consider providing a separate method for
preparing for an infallible, nonblocking teardown.

 Debuggability

 Debuggability

All public types implement Debug (C-DEBUG)

If there are exceptions, they are rare.

Debug representation is never empty (C-DEBUG-NONEMPTY)

Even for conceptually empty values, the Debug representation should never be
empty.

let empty_str = "";
assert_eq!(format!("{:?}", empty_str), "\"\"");

let empty_vec = Vec::<bool>::new();
assert_eq!(format!("{:?}", empty_vec), "[]");

 Future proofing

 Future proofing

Sealed traits protect against downstream implementations (C-SEALED)

Some traits are only meant to be implemented within the crate that defines them.
In such cases, we can retain the ability to make changes to the trait in a
non-breaking way by using the sealed trait pattern.

/// This trait is sealed and cannot be implemented for types outside this crate.
pub trait TheTrait: private::Sealed {
 // Zero or more methods that the user is allowed to call.
 fn ...();

 // Zero or more private methods, not allowed for user to call.
 #[doc(hidden)]
 fn ...();
}

// Implement for some types.
impl TheTrait for usize {
 /* ... */
}

mod private {
 pub trait Sealed {}

 // Implement for those same types, but no others.
 impl Sealed for usize {}
}

The empty private Sealed supertrait cannot be named by downstream crates, so
we are guaranteed that implementations of Sealed (and therefore TheTrait)
only exist in the current crate. We are free to add methods to TheTrait in a
non-breaking release even though that would ordinarily be a breaking change for
traits that are not sealed. Also we are free to change the signature of methods
that are not publicly documented.

Note that removing a public method or changing the signature of a public method
in a sealed trait are still breaking changes.

To avoid frustrated users trying to implement the trait, it should be documented
in rustdoc that the trait is sealed and not meant to be implemented outside of
the current crate.

Examples

	serde_json::value::Index

	byteorder::ByteOrder

Structs have private fields (C-STRUCT-PRIVATE)

Making a field public is a strong commitment: it pins down a representation
choice, and prevents the type from providing any validation or maintaining any
invariants on the contents of the field, since clients can mutate it arbitrarily.

Public fields are most appropriate for struct types in the C spirit: compound,
passive data structures. Otherwise, consider providing getter/setter methods and
hiding fields instead.

Newtypes encapsulate implementation details (C-NEWTYPE-HIDE)

A newtype can be used to hide representation details while making precise
promises to the client.

For example, consider a function my_transform that returns a compound iterator
type.

use std::iter::{Enumerate, Skip};

pub fn my_transform<I: Iterator>(input: I) -> Enumerate<Skip<I>> {
 input.skip(3).enumerate()
}

We wish to hide this type from the client, so that the client's view of the
return type is roughly Iterator<Item = (usize, T)>. We can do so using the
newtype pattern:

use std::iter::{Enumerate, Skip};

pub struct MyTransformResult<I>(Enumerate<Skip<I>>);

impl<I: Iterator> Iterator for MyTransformResult<I> {
 type Item = (usize, I::Item);

 fn next(&mut self) -> Option<Self::Item> {
 self.0.next()
 }
}

pub fn my_transform<I: Iterator>(input: I) -> MyTransformResult<I> {
 MyTransformResult(input.skip(3).enumerate())
}

Aside from simplifying the signature, this use of newtypes allows us to promise
less to the client. The client does not know how the result iterator is
constructed or represented, which means the representation can change in the
future without breaking client code.

Rust 1.26 also introduces the impl Trait feature, which is more concise
than the newtype pattern but with some additional trade offs, namely with impl Trait you are limited in what you can express. For example, returning an
iterator that impls Debug or Clone or some combination of the other iterator
extension traits can be problematic. In summary impl Trait as a return type
is probably great for internal APIs and may even be appropriate for public APIs,
but probably not in all cases. See the "impl Trait for returning complex
types with ease" section of the Edition Guide for more details.

pub fn my_transform<I: Iterator>(input: I) -> impl Iterator<Item = (usize, I::Item)> {
 input.skip(3).enumerate()
}

Data structures do not duplicate derived trait bounds (C-STRUCT-BOUNDS)

Generic data structures should not use trait bounds that can be derived or do
not otherwise add semantic value. Each trait in the derive attribute will be
expanded into a separate impl block that only applies to generic arguments
that implement that trait.

// Prefer this:
#[derive(Clone, Debug, PartialEq)]
struct Good<T> { /* ... */ }

// Over this:
#[derive(Clone, Debug, PartialEq)]
struct Bad<T: Clone + Debug + PartialEq> { /* ... */ }

Duplicating derived traits as bounds on Bad is unnecessary and a
backwards-compatibiliity hazard. To illustrate this point, consider deriving
PartialOrd on the structures in the previous example:

// Non-breaking change:
#[derive(Clone, Debug, PartialEq, PartialOrd)]
struct Good<T> { /* ... */ }

// Breaking change:
#[derive(Clone, Debug, PartialEq, PartialOrd)]
struct Bad<T: Clone + Debug + PartialEq + PartialOrd> { /* ... */ }

Generally speaking, adding a trait bound to a data structure is a breaking
change because every consumer of that structure will need to start satisfying
the additional bound. Deriving more traits from the standard library using the
derive attribute is not a breaking change.

The following traits should never be used in bounds on data structures:

	Clone

	PartialEq

	PartialOrd

	Debug

	Display

	Default

	Error

	Serialize

	Deserialize

	DeserializeOwned

There is a grey area around other non-derivable trait bounds that are not
strictly required by the structure definition, like Read or Write. They may
communicate the intended behavior of the type better in its definition but also
limits future extensibility. Including semantically useful trait bounds on data
structures is still less problematic than including derivable traits as bounds.

Exceptions

There are three exceptions where trait bounds on structures are required:

	The data structure refers to an associated type on the trait.

	The bound is ?Sized.

	The data structure has a Drop impl that requires trait bounds.
Rust currently requires all trait bounds on the Drop impl are also present
on the data structure.

Examples from the standard library

	std::borrow::Cow refers to an associated type on the Borrow trait.

	std::boxed::Box opts out of the implicit Sized bound.

	std::io::BufWriter requires a trait bound in its Drop impl.

 Necessities

 Necessities

Public dependencies of a stable crate are stable (C-STABLE)

A crate cannot be stable (>=1.0.0) without all of its public dependencies being
stable.

Public dependencies are crates from which types are used in the public API of
the current crate.

pub fn do_my_thing(arg: other_crate::TheirThing) { /* ... */ }

A crate containing this function cannot be stable unless other_crate is also
stable.

Be careful because public dependencies can sneak in at unexpected places.

pub struct Error {
 private: ErrorImpl,
}

enum ErrorImpl {
 Io(io::Error),
 // Should be okay even if other_crate isn't
 // stable, because ErrorImpl is private.
 Dep(other_crate::Error),
}

// Oh no! This puts other_crate into the public API
// of the current crate.
impl From<other_crate::Error> for Error {
 fn from(err: other_crate::Error) -> Self {
 Error { private: ErrorImpl::Dep(err) }
 }
}

Crate and its dependencies have a permissive license (C-PERMISSIVE)

The software produced by the Rust project is dual-licensed, under either the
MIT or Apache 2.0 licenses. Crates that simply need the maximum
compatibility with the Rust ecosystem are recommended to do the same, in the
manner described herein. Other options are described below.

These API guidelines do not provide a detailed explanation of Rust's license,
but there is a small amount said in the Rust FAQ. These guidelines are
concerned with matters of interoperability with Rust, and are not comprehensive
over licensing options.

To apply the Rust license to your project, define the license field in your
Cargo.toml as:

[package]
name = "..."
version = "..."
authors = ["..."]
license = "MIT OR Apache-2.0"

Then add the files LICENSE-APACHE and LICENSE-MIT in the repository root,
containing the text of the licenses (which you can obtain, for instance, from
choosealicense.com, for Apache-2.0
and MIT).

And toward the end of your README.md:

License

Licensed under either of

 * Apache License, Version 2.0
 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
 * MIT license
 (LICENSE-MIT or http://opensource.org/licenses/MIT)

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.

Besides the dual MIT/Apache-2.0 license, another common licensing approach used
by Rust crate authors is to apply a single permissive license such as MIT or
BSD. This license scheme is also entirely compatible with Rust's, because it
imposes the minimal restrictions of Rust's MIT license.

Crates that desire perfect license compatibility with Rust are not recommended
to choose only the Apache license. The Apache license, though it is a permissive
license, imposes restrictions beyond the MIT and BSD licenses that can
discourage or prevent their use in some scenarios, so Apache-only software
cannot be used in some situations where most of the Rust runtime stack can.

The license of a crate's dependencies can affect the restrictions on
distribution of the crate itself, so a permissively-licensed crate should
generally only depend on permissively-licensed crates.

 External links

 External links

	RFC 199 - Ownership naming conventions

	RFC 344 - Naming conventions

	RFC 430 - Naming conventions

	RFC 505 - Doc conventions

	RFC 1574 - Doc conventions

	RFC 1687 - Crate-level documentation

	Elegant Library APIs in Rust

	Rust Design Patterns

OEBPS/nav.xhtml

 Table Of Contents

 		About

 		Checklist

 		1. Naming

 		2. Interoperability

 		3. Macros

 		4. Documentation

 		5. Predictability

 		6. Flexibility

 		7. Type safety

